Search results

Filters

  • Journals
  • Date

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

The quality of the supplied power by electricity utilities is regulated and of concern to the end user. Power quality disturbances include interruptions, sags, swells, transients and harmonic distortion. The instruments used to measure these disturbances have to satisfy minimum requirements set by international standards. In this paper, an analysis of multi-harmonic least-squares fitting algorithms applied to total harmonic distortion (THD) estimation is presented. The results from the different least-squares algorithms are compared with the results from the discrete Fourier transform (DFT) algorithm. The algorithms are assessed in the different testing states required by the standards.
Go to article

Abstract

In order to understand commands given through voice by an operator, user or any human, a robot needs to focus on a single source, to acquire a clear speech sample and to recognize it. A two-step approach to the deconvolution of speech and sound mixtures in the time-domain is proposed. At first, we apply a deconvolution procedure, constrained in the sense, that the de-mixing matrix has fixed diagonal values without non-zero delay parameters. We derive an adaptive rule for the modification of the de-convolution matrix. Hence, the individual outputs extracted in the first step are eventually still self-convolved. This corruption we try to eliminate by a de-correlation process independently for every individual output channel.
Go to article

Abstract

Estimating the fundamental frequency and harmonic parameters is basic for signal modelling in a power supply system. Differing from the existing parameter estimation algorithms either in power quality monitoring or in harmonic compensation, the proposed algorithm enables a simultaneous estimation of the fundamental frequency, the amplitudes and phases of harmonic waves. A pure sinusoid is obtained from an input multiharmonic input signal by finite-impulse-response (FIR) comb filters. Proposed algorithm is based on the use of partial derivatives of the processed signal and the weighted estimation procedure to estimate the fundamental frequency, the amplitude and the phase of a multi-sinusoidal signal. The proposed algorithm can be applied in signal reconstruction, spectral estimation, system identification, as well as in other important signal processing problems. The simulation results verify the effectiveness of the proposed algorithm.
Go to article

This page uses 'cookies'. Learn more