Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

One of the actual challenges in tissue engineering applications is to efficiently produce as high of number of cells as it is only possible, in the shortest time. In static cultures, the production of animal cell biomass in integrated forms (i.e. aggregates, inoculated scaffolds) is limited due to inefficient diffusion of culture medium components observed in such non-mixed culture systems, especially in the case of cell-inoculated fiber-based dense 3D scaffolds, inside which the intensification of mass transfer is particularly important. The applicability of a prototyped, small-scale, continuously wave-induced agitated system for intensification of anchorage-dependent CP5 chondrocytes proliferation outside and inside three-dimensional poly(lactic acid) (PLA) scaffolds has been discussed. Fibrous PLA-based constructs have been inoculated with CP5 cells and then maintained in two independent incubation systems: (i) non-agitated conditions and (ii) culture with wave-induced agitation. Significantly higher values of the volumetric glucose consumption rate have been noted for the system with the wave-induced agitation. The advantage of the presented wave-induced agitation culture system has been confirmed by lower activity of lactate dehydrogenase (LDH) released from the cells in the samples of culture medium harvested from the agitated cultures, in contrast to rather high values of LDH activity measured for static conditions. Results of the proceeded experiments and their analysis clearly exhibited the feasibility of the culture system supported with continuously wave-induced agitation for robust proliferation of the CP5 chondrocytes on PLA-based structures. Aside from the practicability of the prototyped system, we believe that it could also be applied as a standard method offering advantages for all types of the daily routine laboratory-scale animal cell cultures utilizing various fiber-based biomaterials, with the use of only regular laboratory devices.
Go to article

Abstract

Typically applied static (i.e. non-agitated) cultures do not provide sufficient conditions for efficient propagation of suspended non-adherent cells, in general. Feasibility of small-scale wave-type agitated single-use bioreactors for gentle agitation underlies applicability of such systems for scaling-up of fragile biomass of animal cells. The basic aim of the study was to compare the results of non-adherent HL-60 cell propagation performed referentially as the batch culture in typical static (i.e. non-agitated) disposable culture flasks (50 cm3 of culture medium) and in ReadyToProcess WAVETM25 bioreactor system (GE Healthcare) equipped with disposable culture bag (300 cm3 of culture medium) subjected to continuous wave-type agitation. The density and viability of HL-60 cells were significantly higher for the bioprocess subjected to wave-type agitation, than in the reference static culture. The values of the specific rate of glucose consumption per cell (rglc=cell) exhibited by HL-60 cells maintained in the system with continuous wave-type agitation was significantly lower (i.e. up to more than 42%) than the values noted for the static culture, for exactly the same time-points of two compared cultures. The results of the studies undoubtedly and comprehensively confirmed the applicability of the studied disposable bioreactor with wave-induced agitation as the right platform for proceeding the propagation of non- adherent HL-60 cells and for providing the culture conditions required by HL-60 cells for sustainable metabolism.
Go to article

This page uses 'cookies'. Learn more