Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

This review covers aspects of soil science and soil biology of Antarctica with special focus on King George Island, South Shetlands, the martitime Antarctic. New approaches in soil descriptions and soil taxonomy show a great variety of soil types, related to different parent material, mainly volcanic origin, as well as on influences by soil biological processes. The spread of higher rooting plants attract microorga nisms, nematodes and collemboles which in turn build new organic material and change the environment for further successors. Microbial communities are drivers with respect to metabolic and physiological properties indicating a great potential in a changing environment. The literature review also shows a lack of investigations on processes of carbon and nitrogen turnover, despite wide knowledge on its standing stock in different environments. Further , only few reports were found on the processes of humification. Only few data are available which can be regarded as long term monitorings, hence, such projects need to be established in order to follow ecological changes.
Go to article

Abstract

Soils, having a well-developed sequence of A and Bw horizons, are widespread on the uplifted marine terrace 8- 12 m a.s.l. in the proximity of Nottinghambukta Bay . The present-day origin of these soils is however questionable, while similarly developed soils, but buried under the cover of the youngest till were found on a forefield of the Werenskiold Glacier. To quantify an intensity of the soil-forming process under present climate conditions of SW Spitsbergen , the chronosequence of soils developed from the Recent, up to 70 year-old moraines, was studied on the forefield of Werenskiold Glacier. Significant dissolution of CaCO3, decrease of pH, leaching of calcium and magnesium, increase of amorphous iron content, as well as an accumulation of organic matter and initial formation of aggregate soil structure were observed within the surface layer of recent till. The 70 year-long period of pedogenesis was, however, too short for a distinct morphological differentiation of the subsurface B horizon. It is concluded, that deep and structural Bw horizons of some surface and buried soils are relicts of a much longer period of relatively warm climate before the last transgression of glaciers.
Go to article

This page uses 'cookies'. Learn more