Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

This paper presents a universal approximation of the unit circle by a polygon that can be used in signal processing algorithms. Optimal choice of the values of three parameters of this approximation allows one to obtain a high accuracy of approximation. The approximation described in the paper has a universal character and can be used in many signal processing algorithms, such as DFT, that use the mathematical form of the unit circle. One of the applications of the described approximation is the DFT linear interpolation method (LIDFT). Applying the results of the presented paper to improve the LIDFT method allows one to significantly decrease the errors in estimating the amplitudes and frequencies of multifrequency signal components. The paper presents the derived formulas, an analysis of the approximation accuracy and the region of best values for the approximation parameters.
Go to article

Abstract

This paper derives analytical formulas for the systematic errors of the linear interpolated DFT (LIDFT) method when used to estimating multifrequency signal parameters and verifies this analysis using Monte-Carlo simulations. The analysis is performed on the version of the LIDFT method based on optimal approximation of the unit circle by a polygon using a pair of windows. The analytical formulas derived here take the systematic errors in the estimation of amplitude and frequency of component oscillations in the multifrequency signal as the sum of basic errors and the errors caused by each of the component oscillations. Additional formulas are also included to analyze particular quantities such as a signal consisting of two complex oscillations, and the analyses are verified using Monte-Carlo simulations.
Go to article

This page uses 'cookies'. Learn more