Search results

Filters

  • Journals

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

Compared to other European countries, Poland has scarce drinking water resources and exhibits significant variation in annual runoff. On the other hand, the geothermal water resources present in sedimentary/structural basins, mostly in the Polish Lowlands and the Podhale geothermal system, not only provide a valuable source of renewable energy, which is utilized, although only to a limited extent, but can also be used for many other purposes. The paper presents the results of studies related to the desalination of low dissolved mineral content geothermal waters from the Bańska IG-1 well using a dual hybrid system based on ultrafiltration and reverse osmosis. The desalination of geothermal waters may be considered a possible solution leading to the decentralization of drinking water supply. In many cases, using cooled waters for drinking purposes may be considered an alternative method of disposing of them, in particular for open drain arrangements, i.e. where cooled water is dumped into surface waters.
Go to article

Abstract

The paper discusses the water resources of the Krężniczanka River catchment. The catchment with an area of 224.9 km2 is located south-west of Lublin. The characteristics of the groundwaters and runoff were determined based on hydrological and hydrogeological materials of the Department of Hydrology of the Maria Curie-Skłodowska University (UMCS). Mean runoff in the period from 2010 to 2016 amounted to 125.7 mm, precipitation 629.4 mm, and evapotranspi-ration 503.7 mm. A strong relationship was determined between the rhythm of runoff and ground-water level fluctuations. The contribution of groundwater supply in total runoff equalled 81.5%.
Go to article

Abstract

The paper presents equations of a mathematical model to calculate flow parameters in characteristic cross-sections in the steam-water injector. In the model, component parts of the injector (steam nozzle, water nozzle, mixing chamber, condensation wave region, diffuser) are treated as a series of connected control volumes. At first, equations for the steam nozzle and water nozzle are written and solved for known flow parameters at the injector inlet. Next, the flow properties in two-phase flow comprising mixing chamber and condensation wave region are determined from mass, momentum and energy balance equations. Then, water compression in diffuser is taken into account to evaluate the flow parameters at the injector outlet. Irreversible losses due to friction, condensation and shock wave formation are taken into account for the flow in the steam nozzle. In two-phase flow domain, thermal and mechanical nonequilibrium between vapour and liquid is modelled. For diffuser, frictional pressure loss is considered. Comparison of the model predictions with experimental data shows good agreement, with an error not exceeding 15% for discharge (outlet) pressure and 1 K for outlet temperature.
Go to article

This page uses 'cookies'. Learn more