Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 207
items per page: 25 50 75
Sort by:

Abstract

The technical requirements for the determination of physical parameters of vibration isolating material have not been standardized in Europe and Poland yet, which significantly hinders the ability to compare vibration isolating materials offered on the market. Therefore, there is a need for establishing a norm that could be applied both for the determination of the physico-mechanical properties of elastic vibration isolation elements in rail transport for domestic and foreign producers as well as in their selection for application in a specific vibration isolation system. The paper presents a proposal to standardize the methodology of the estimation of vibration isolation materials physical parameters authorized for use in vibration isolation systems used in rail transport. Methodology for measuring the physico-mechanical parameters of vibration isolating material presented in the paper forms uniform test procedure developed based on a fragmentary norms for flexible materials testing. The use of the proposed research methodology enables the creation of a unified database of elastic materials which parameters will be easy to compare, and choice between them will become easier for designers of vibration isolation systems used in rail transport.
Go to article

Abstract

We present the results of investigations of Pb(Fe1/2Nb1/2)O3 (PFN) ceramic samples obtained using two-step synthesis (i.e. columbite method). For obtained samples complex investigations of microstructure, magnetic and electrophysical properties have been performed at low and at high temperatures. Microstructure is characterized by small grains with high homogeneity and high density (low porosity). Impedance of samples and the phase shift angle have been measured using LCR Meter. Next the AC electric conductivity, dielectric permittivity and loss tangent have been calculated. AC conductivity at frequency 3 Hz was measured in similar way using Quantum Design PPMS System in magnetic fields 1000 Oe and 10000 Oe. At temperature range 240K-260K the anomalies of conductivity are observed. These anomalies depend on measuring cycle (heating, cooling) and magnetic field.
Go to article

Abstract

The ceaseless progress of nanotechnology, observed in the last years, causes that nanomaterials are more and more often applied in several fields of industry, technique and medicine. E.g. silver nanoparticles are used in biomedicine for disinfection and polymer nanoparticles allow insulin transportation in pharmacology. New generation materials containing nanoparticles are also used in the chemical industry (their participation in the commercial market equals app. 53 %). Nanomaterials are used in electronics, among others for semiconductors production (e.g. for producing nanoink Ag, which conducts electric current). Nanomaterials, due to their special properties, are also used in the foundry industry in metallurgy (e.g. metal alloys with nanocrystalline precipitates), as well as in investment casting and in moulding and core sand technologies. Nanoparticles and containing them composites are applied in several technologies including foundry practice, automotive industry, medicine, dentistry etc. it is expected that their role and market share will be successively growing.
Go to article

Abstract

Horizontal centrifugal casting is an effective method for the production of hollow metal with good mechanical properties, low defect, cast to size and relatively cheap. The ability of a metal to satisfy the above requirements highly depends on its microstructure. In this study, the relationship between microstructural parameters such as grain size and the amount of phases with bulk hardness of SnCu4Pb3 is concerned in three areas of the product. Consequently, to achieve the desired hardness of the product in a particular area, the interaction of two factors of the microstructure including, grain size and particles amount of the hard intermetallic compositions (Cu6Sn5) should be noted.
Go to article

Abstract

Rare earth metals including yttrium and europium are one of several critical raw materials, the use of which ensures the development of the so-called high technology. The possibility of their recovery in Europe is limited practically only to secondary materials such as phosphogypsum and electronic waste. The article presents the results of our research concerning the development of recovery technology of yttrium and europium from luminophore CRT used lamps. It describes the principle of separation of elements and the test results of cleaning the concentrate. It was shown that the costs of preparing the concentrate according to the proposed technology are lower than the phosphogypsum processing technology and the composition of the resulting product does not contain hazardous substances.
Go to article

Abstract

Some physical concepts important for a hysteresis model (effective field, anhysteretic magnetization) are discussed on the example of Jiles-Atherton model. The Jiles-Atherton model reveals some drawbacks, which make this model more difficult to be applied in electrical engineering. In particular, it does not describe accurately the magnetization curves after a reversal, moreover complex magnetization cycles are poorly represented. On the other hand, the phenomenological description proposed by Takács seems to be a valuable alternative to the Jiles-Atherton formalism. The concept of effective field may be easily incorporated in the description.
Go to article

Abstract

A short overview of the developments of functional materials featuring miniaturisation and integration is illustrated by examples taken from the ?eld of ceramic functional materials. To obtain new materials new methods are required. Most of them are microfabrication processes developed by the "top-down" approach.
Go to article

Abstract

Recently, some major changes have occurred in the structure of the European foundry industry, such as a rapid development in the production of castings from compacted graphite iron and light alloys at the expense of limiting the production of steel castings. This created a significant gap in the production of heavy steel castings (exceeding the weight of 30 Mg) for the metallurgical, cement and energy industries. The problem is proper moulding technology for such heavy castings, whose solidification and cooling time may take even several days, exposing the moulding material to a long-term thermal and mechanical load. Owing to their technological properties, sands with organic binders (synthetic resins) are the compositions used most often in industrial practice. Their main advantages include high strength, good collapsibility and knocking out properties, as well as easy mechanical reclamation. The main disadvantage of these sands is their harmful effect on the environment, manifesting itself at various stages of the casting process, especially during mould pouring. This is why new solutions are sought for sands based on organic binders to ensure their high technological properties but at the same time less harmfulness for the environment. This paper discusses the possibility of reducing the harmful effect of sands with furfuryl binders owing to the use of resins with reduced content of free furfuryl alcohol and hardeners with reduced sulphur content. The use of alkyd binder as an alternative to furfuryl binder has also been proposed and possible application of phenol-formaldehyde resins was considered.
Go to article

Abstract

Polish brines are highly mineralized and can potentially be used for recovery of selected useful elements such as magnesium and potassium. They also contain a number of other elements, including iodine, bromine, boron, and strontium. The results of the examination of the chemical composition of groundwater from the Mesozoic formations (bromine, iodine, lithium, magnesium, and strontium content) of northern and central Poland were analyzed. The basic statistical parameters of the content of these elements (Br, I, Mg) in brines of the Triassic, Jurassic, and Cretaceous deposits and the content of lithium and strontium in waters of the entire Mesozoic formations were determined. In order to indicate aquifers that are the most suitable for the recovery of bromine, iodine, lithium, magnesium, and strontium, the relationship between concentrations and the depth of retention and dependencies between selected chemical components of these waters were analyzed. It has been found that the mineralization and concentrations of magnesium, bromine, and iodine increase with the age of aquifers, where these waters occur. Triassic waters are the most prospective for bromine and magnesium recovery among all analyzed aquifers. Furthermore, a relationship between the content of bromine, strontium, and magnesium has also been observed. The increase in the content of individual elements observed for lithium, strontium, and bromine with the increasing depth indicates a potential abundance of waters occurring at significant depths. The presented analysis is an approximation of the content of bromine, iodine, lithium, magnesium, and strontium; however, it may be the basis for further studies on the perspectives of using brines from the Mesozoic deposits of central and northern Poland as a source of chemical raw materials.
Go to article

Abstract

This article presents the results of the study of changes in mineral and chemical composition of artificial aggregates consisting of coal shale (a hard coal mining waste) and fluidized ashes. Such an aggregate was used for road construction. After completion of the construction works but before making the road available for public use, significant deformation of the surface in the form of irregular buckling of the asphalt layer occurred. It was excluded that this resulted from mining damage, design errors or performance mistakes, among others. A study of the materials that had been incorporated in the construction layers was undertaken in order to find the component and the mechanism responsible for the buckling of the road surface. A comparison of the mineral and chemical composition of aggregate samples collected from the embankment where the road buckled with the reference sample and samples from places without deformations showed that the bumps in the road embankment consisted of minerals that were not initially present in the aggregate. Wastes produced as a result of high temperatures (slag and power plants ashes, metallurgical wastes) are not as stable in terms of chemical and phase composition in the hypergenic environment. As a result of the processes occurring in the road embankment, anhydrite, which is the primary component of fluidized ashes, was transformed into gypsum and ettringite. As a result of contact with water CaO (present in fluidized ashes) easily changed into calcium hydroxide. As the crystallization of these minerals is expansive, it resulted in the filling of pores and, in extreme cases, in a substantial increase in the volume of the aggregate and, consequently, in the deformation of the road surface.
Go to article

Abstract

The main aim of the study was to determine the goodness of fit between the relaxation function described with a rheological model and the real (experimental) relaxation curves obtained for digital materials fabricated with a Connex 350 printer using the PolyJet additive manufacturing technology. The study involved estimating the uncertainty of approximation of the parameters of the theoretical relaxation curve. The knowledge of digital materials is not yet sufficient; their properties are not so well-known as those of metallic alloys or plastics used as structural materials. Intensive research is thus required to find out more about their behavior in various conditions. From the calculation results, i.e. the uncertainty of approximation of the relaxation function parameters, it is evident that the experimental curves coincide with the curves obtained by means of the solid model when the approximation uncertainty is taken into account. This suggests that the assumed solid model is well-suited to describe a real material.
Go to article

Abstract

The paper presents analyses of current research projects connected with explosive material sensors. Sensors are described assigned to X and γ radiation, optical radiation sensors, as well as detectors applied in gas chromatography, electrochemical and chemical sensors. Furthermore, neutron techniques and magnetic resonance devices were analyzed. Special attention was drawn to optoelectronic sensors of explosive devices.
Go to article

Abstract

In this study, an artificial neural network application was performed to tell if 18 plates of the same material in different shapes and sizes were cracked or not. The cracks in the cracked plates were of different depth and sizes and were non-identical deformations. This ANN model was developed to detect whether the plates under test are cracked or not, when four plates have been selected randomly from among a total of 18 ones. The ANN model used in the study is a model uniquely tailored for this study, but it can be applied to all systems by changing the weight values and without changing the architecture of the model. The developed model was tested using experimental data conducted with 18 plates and the results obtained mainly correspond to this particular case. But the algorithm can be easily generalized for an arbitrary number of items.
Go to article

Abstract

Hybrid filter material was obtained via modification of polypropylene (PP) nonwoven with nanosize zinc oxide particles of a high aspect ratio. Modification was conducted as a three-step process, a variant of hydrothermal method used for synthesis of nano-ZnO, adopted for coating three dimensional polymeric nonwoven filters. The process consisted of plasma treatment of nonwoven to increase its wettability, deposition of ZnO nanoparticles and low temperature hydrothermal growth of ZnO rods. The modified nonwovens were investigated by a high resolution scanning electron microscopy (HR-SEM). It has been found that the obtained hybrid filters offer a higher filtration efficiency, in particular for so called most penetrating particle sizes.
Go to article

Abstract

Sound absorption coefficient is a commonly used parameter to characterize the acoustic properties of sound absorbing materials. It is defined within the frequency range of 100-5 000 Hz. In the industrial conditions, many appliances radiating acoustic energy of the frequency range of above 5000 Hz are used and at the same time it is known that a noise within the frequency range of 5 000-50 000 Hz can have a harmful effect on people,hence there is a need to define the coefficient in this frequency range. The article presents a proposal for a method of measurement of the sound absorption coefficient of materials in the frequency range from 5 000 Hz to 50 000 Hz. This method is a modification of the reverberation method with the use of interrupted noise.
Go to article

Abstract

Recently, a new class of ceramic foams with porosity levels up to 90% has been developed as a result of the association of the gelcasting process and aeration of the ceramic suspension. This paper presents and discusses original results advertising sound absorbing capabilities of such foams. The authors man- ufactured three types of alumina foams in order to investigate three porosity levels, namely: 72, 88, and 90%. The microstructure of foams was examined and typical dimensions and average sizes of cells (pores) and cell-linking windows were found for each porosity case. Then, the acoustic absorption coefficient was measured in a wide frequency range for several samples of various thickness cut out from the foams. The results were discussed and compared with the acoustic absorption of typical polyurethane foams proving that the alumina foams with high porosity of 88-90% have excellent sound absorbing properties competitive with the quality of sound absorbing PU foams of higher porosity.
Go to article

Abstract

The microstructures and mechanical properties of T92 martensitic steel/Super304 austenitic steel weld joints with three welding consumables were investigated. Three types of welding materials ERNiCr-3, ERNiCrCoMo-1and T-304H were utilized to obtain dissimilar welds by using gas tungsten arc weld (GTAW). The results show that heat affect zone (HAZ) of T92 steel consists of coarse-grained and fine-grained tempered martensites. The microstructures of joints produced from ERNiCrCoMo-1 consist of equiaxed dendrite and columnar dendrite grains, which are more complicated than that of ERNiCr-3. In the tensile tests, joints constructed from ERNiCrCoMo-1 and T-304H met the ASME standard. The highest fracture energy was observed in specimens with the welding material ERNiCrCoMo-1. Ni content in weld seam of ERNiCrCoMo-1 was highest, which was above 40%. In conclusion, the nickel alloy ERNiCrCoMo-1 was the most suitable welding material for joints produced from T92 martensitic steel/Super304 austenitic steel.
Go to article

Abstract

In cast iron foundries, used ferromagnetic batch materials can be transported and loaded into the furnace by lifting magnet. The precision of these operations by using electromagnetic grippers depends primarily on the variation in the mass of the batch material pieces. The article presents the characteristics of size of the batch materials used in the selected iron foundry. The obtained ranges mass values of individual pig iron ingots have been presented. It has been found that the mass of individual pig iron ingot may differ ± 25% from the declared by producer. The mass range of individual pieces of crushed or uncrushed return scrap was examined. Some pieces of uncrushed scrap have the mass more than three times the average weight of pieces of this scrap. Characteristics of the lifting capacity of these materials by a lifting magnet suspended to the crane was determined. Analysis of the obtained results indicates that for materials with less diversified mass of individual ferromagnetic pieces it is possible to use a gripper to weight a bigger portion with the same control setting. It was also found that there is a significant dispersion for a given gripper control, especially for materials with a wide range of individual pieces mass changes.
Go to article

Abstract

The publication presents the results of examination of selected carburizers used for cast iron production with respect to their electric resistance. Both the synthetic graphite carburizers and petroleum coke (petcoke) carburizers of various chemical composition were compared. The relationships between electrical resistance of tested carburizers and their quality were found. The graphite carburizers exhibited much better conductivity than the petcoke ones. Resistance characteristics were different for the different types of carburizers. The measurements were performed according to the authors’ own method based on recording the electric current flow through the compressed samples. The samples of the specified diameter were put under pressure of the gradually increased value (10, 20, 50, 60, and finally 70 bar), each time the corresponding value of electric resistance being measured with a gauge of high accuracy, equal to 0.1μΩ. The higher pressure values resulted in the lower values of resistance. The relation between both the thermal conductance and the electrical conductance (or the resistance) is well known and mentioned in the professional literature. The results were analysed and presented both in tabular and, additionally, in graphic form.
Go to article

Abstract

The paper presents results of compressive strength investigations of EN AC-44200 based aluminum alloy composite materials reinforced with aluminum oxide particles at ambient and at temperatures of 100, 200 and 250C. They were manufactured by squeeze casting of the porous preforms made of α-Al2O3 particles with liquid aluminum alloy EN AC-44200. The composite materials were reinforced with preforms characterized by the porosities of 90, 80, 70 and 60 vol. %, thus the alumina content in the composite materials was 10, 20, 30 and 40 vol.%. The results of the compressive strength of manufactured materials were presented and basing on the microscopic observations the effect of the volume content of strengthening alumina particles on the cracking mechanisms during compression at indicated temperatures were shown and discussed. The highest compressive strength of 470 MPa at ambient temperature showed composite materials strengthened with 40 vol.% of α-Al2O3 particles.
Go to article

Abstract

The paper presents measurement results of standing wave ratio to be used as an efficiency indicator of microwave absorption by used moulding and core sands chosen for the microwave utilization process. The absorption measurements were made using a prototype stand of microwave slot line. Examined were five used moulding and core sands. It was demonstrated that the microwave absorption measurements can make grounds for actual microwave utilization of moulding and core sands.
Go to article

Abstract

The paper presents a formula useful for prediction of loss density in soft magnetic materials, which takes into account multi-scale energy dissipation. A universal phenomenological P(Bm, f) relationship is used for loss prediction in chosen soft magnetic materials. A bootstrap method is used to generate additional data points, what makes it possible to increase the prediction accuracy. A substantial accuracy improvement for estimated model parameters is obtained in the case, when additional data points are taken into account. The proposed description could be useful both for device designers and researchers involved in computational electromagnetism.
Go to article

Abstract

An extension of the modified Jiles-Atherton description to include the effect of anisotropy is presented. Anisotropy is related to the value of the angular momentum quantum number J, which affects the form of the Brillouin function used to describe the anhysteretic magnetization. Moreover the shape of magnetization dependent R(m) function is influenced by the choice of the J value.
Go to article

Abstract

The paper presents the impact of biodegradable material - polycaprolactone (PCL) on selected properties of moulding sands. A self-hardening moulding sands with phenol-furfuryl resin, which is widely used in foundry practice, and an environmentally friendly self-hardening moulding sand with hydrated sodium silicate where chosen for testing. The purpose of the new additive in the case of synthetic resin moulding sands is to reduce their harmfulness to the environment and to increase their “elasticity” at ambient temperature. In the case of moulding sands with environmentally friendly hydrated sodium silicate binder, the task of the new additive is to increase the elasticity of the tested samples while preserving their ecological character. Studies have shown that the use of 5% PCL in moulding sand increases their flexibility at ambient temperature, both with organic and inorganic binders. The influence of the new additive on the deformation of the moulding sands at elevated temperatures has also been demonstrated.
Go to article

Abstract

Preparation and properties of hierarchically structured porous silica monoliths have been discussed from the viewpoint of their application as continuous microreactors for liquid-phase synthesis of fine chemical in multi kilogram scales. The results of recent topical papers published by two research teams of Institute of Chemical Engineering Polish Academy of Sciences (ICE) and Department of Chemical Engineering and Process Design, Chemical Faculty, Silesian University of Technology (SUT) have been analyzed to specify the governing traits of microreactors. It was concluded that even enhancement factor of 100 in activity, seen in enzyme catalyzed reactions, can be explained by a proportional reduction of its physical constraints, i.e. huge enhancement of external mass transfer and micromixing. It is induced by very chaotic flows of liquid in tens of thousands of waving connected channels of ca. 25–50 mm in diameter, present in the skeleton. The scale of enhancement in the case of less active catalysts was smaller, but still large enough to consider the most practical applications.
Go to article

This page uses 'cookies'. Learn more