Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 80
items per page: 25 50 75
Sort by:

Abstract

The new legislative provisions, regulating the trade in solid fuels in our country, draw attention to the need to develop and improve methods and methods of managing hard coal sludge. The aim of the work was to show whether filtration parameters (mainly the permeability coefficient) of hard coal sludge are sufficient for construction of insulating layers in landfills at the stage of their closing and what is the demand for material in the case of such a procedure. The analysis was carried out for landfills for municipal waste in the Opolskie, Śląskie and Małopolskie provinces. For hard coal sludge, the permeability coefficient values are in the range of 10–8–10–11 m/s, with the average value of 3.16 × 10–9 m/s. It can be concluded that this material generally meets the criteria of tightness for horizontal and often vertical flows. When compaction, increasing load or mixing with fly ash from hard coal combustion and clays, the achieved permeability coefficient often lowers its values. Based on the analysis, it can be assumed that hard coal sludge can be used to build mineral insulating barriers. At the end of 2016, 50 municipal landfills were open in the Opolskie, Śląskie and Małopolskie Provinces. Only 36 of them have obtained the status of a regional installation, close to 1/3 of the municipal landfill are within the Major Groundwater Basin (MGB) range. The remaining storage sites will be designated for closure. Assuming the necessity to close all currently active municipal waste landfills, the demand for hard coal sludge amounts to a total of 1,779,000 m3 which, given the assumptions, gives a mass of 2,704,080 Mg. The total amount of hard coal sludge production is very high in Poland. Only two basic mining groups annually produce a total of about 1,500,000 Mg of coal sludge. The construction of insulating layers in landfills of inert, hazardous and non-hazardous and inert wastes is an interesting solution. Such an application is prospective, but it will not solve the problem related to the production and management of this waste material as a whole. It is important to look for further solutions.
Go to article

Abstract

According to International Energy Agency (IEA) energy security is the continuous supply of energy at acceptable prices. National energy is based primarily on its own energy resources such as hard coal and brown coal. The 88% of electric energy production from these minerals gives us full energy independence. Additionally, the energy production costs from these raw materials are the lowest compared to other technologies. Of these two, the energy produced from brown coal is characterized by the lowest unit technical generating cost. Poland has the resources of these minerals for decades to come, the experience related to mining and processing them, scientific and design facilities and technical facilities and factories producing machines and equipment for their own needs, as well as for export. Coal is and should remain an important source of electricity and heat supply in Poland for the next 25–50 years. It is one of the most reliable and profitable energy sources. This policy may be difficult in the next decades due to the exhaustion of the available resources of hard and brown coal. The conditions for the construction of new mines, and thus for the development of coal mining in Poland, are very interdisciplinary in legal, environmental, economic and reputational terms. Germany has similar problems. Despite the fact that it is an image of a country investing in renewable energy sources, which are pioneers of energy production from RES, in reality hard and brown coal are still the primary sources utilized to produce electric energy.
Go to article

Abstract

The aim of this paper is an analysis of the variability of the methane content in coal seams in the area of the Dębieńsko Mine and it’s relation to the geological structure of this coal deposit, and also the possibilities of a methane hazard in the areas of future coal mining and methane utilization as a fuel. The Dębieńsko coal deposit is located in the western part of the Upper Silesian Coal Basin (USCB), on the boundary between folded and disjunctive tectonic zones. Coal exploitation in this area ended in 2000, but interest in this deposit is currently high due to plans to initiate coking coal mining. The area of the Dębieńsko mine is relatively well prospected because of the deep drillings (up to 2000 m in depth) carried out within it. The methane conditions of the deposit are varied, the methane content increases with depth according to northern pattern of methane distribution in the USCB, in which the high-methane zone occurs under the several hundred meters zone of natural outgassing of the coal seams. This zone is divided into two smaller methane sub-zones, the first (shallower) at a depth of 1000 m and the second (deeper) at 1700–1900 m. A sub-zone of lower methane content occurs between these two high-methane sub-zones. The most important reasons for this methane distribution are temperature and pressure facilitating the gas adsorption in coal seams, and also the presence of impermeable siltstones and shalestones as well as the maceral composition and coal rank of coal seams. The methane content also changes laterally in accordance with the tectonics of the area. The so called Knurów and Leszczyna Anticline with found increased methane content in coal seams in relation to neighboring areas as well as Orlova Overthrust together with the system of latitudinal faults of brittle tectonic regime which are possible pathways for methane migration play a special role here. These structures can be taken into account as a potential source of methane hazard in a future coal mine, they can also be promising structures for methane prospection as a fuel.
Go to article

Abstract

The new legislative provisions, regulating the solid fuel trade in Poland, and the resolutions of provincial assemblies assume, inter alia, a ban on the household use of lignite fuels and solid fuels produced with its use; this also applies to coal sludge, coal flotation concentrates, and mixtures produced with their use. These changes will force the producers of these materials to find new ways and methods of their development, including their modification (mixing with other products or waste) in order to increase their attractiveness for the commercial power industry. The presented paper focuses on the analysis of coal sludge, classified as waste (codes 01 04 12 and 01 04 81) or as a by-product in the production of coals of different types. A preliminary analysis aimed at presenting changes in quality parameters and based on the mixtures of hard coal sludge (PG SILESIA) with coal dusts from lignite (pulverized lignite) (LEAG) has been carried out. The analysis of quality parameters of the discussed mixtures included the determination of the calorific value, ash content, volatile matter content, moisture content, heavy metal content (Cd, Tl, Hg, Sb, As, Pb, Cr, Co, Cu, Mn, Ni, and W), and sulfur content. The preliminary analysis has shown that mixing coal sludge with coal dust from lignite and their granulation allows a product with the desired quality and physical parameters to be obtained, which is attractive to the commercial power industry. Compared to coal sludge, granulates made of coal sludge and coal dust from lignite with or without ground dolomite have a higher sulfur content (in the range of 1–1.4%). However, this is still an acceptable content for solid fuels in the commercial power industry. Compared to the basic coal sludge sample, the observed increase in the content of individual toxic components in the mixture samples is small and it therefore can be concluded that the addition of coal dust from lignite or carbonates has no significant effect on the total content of the individual elements. The calorific value is a key parameter determining the usefulness in the power industry. The size of this parameter for coal sludge in an as received basis is in the range of 9.4–10.6 MJ/kg. In the case of the examined mixtures of coal sludge with coal dust from lignite, the calorific value significantly increases to the range of 14.0–14.5 MJ/kg (as received). The obtained values increase the usefulness in the commercial power industry while, at the same time, the requirements for the combustion of solid fuels are met to a greater extent. A slight decrease in the calorific value is observed in the case of granulation with the addition of CaO or carbonates. Taking the analyzed parameters into account, it can be concluded that the prepared mixtures can be used in the combustion in units with flue gas desulfurization plants and a nominal thermal power not less than 1 MW. At this stage of work no cost analysis was carried out.
Go to article

Abstract

The paper discusses the current situation as well as the perspectives for hard coal extraction in India, a global leader both in terms of hard coal output and import volumes. Despite this, over 300 million people lack access to electricity in this country. The main energy resource of India is hard coal and Coal India Limited (CI L) is the world’s biggest company dealing with hard coal extraction. CI L has over 450 mines, employs over 400,000 people, and extracts ca. 430 million tons of hard coal from its 471 mining facilities. India is planning the decisive development of hard coal mining to extract 1.5 billion tons in 2020. Hard coal output in India can be limited due to the occurrence of various threats, including the methane threat. The biggest methane threat occurs in the mines in the Jharia basin, located in East India (the Jharkhand province), where coal methane content is up to ca. 18 m3/Mg. Obtaining methane from coal seams is becoming a necessity. The paper provides guidelines for the classification of particular levels of the methane threat in Indian’s mines. The results of methane sorption tests, carried by the use of the microgravimetric method on coal from the Moonidih mine were presented. Sorption capacities and the diffusion coefficient of methane on coal were determined. The next step was to determine the possibility of degassing the seam, using numerical methods based on the value of coal diffusion coefficient based on Crank’s diffusion model solution. The aim of this study was the evaluation of coal seam demethanization possibilities. The low diffusivity of coal, combined with a minor network of natural cracks in the seam, seems to preclude foregoing demethanization carried out by means of coal seam drilling, without prior slotting.
Go to article

Abstract

This paper presents the results of the investigation associated with the determination of mercury content in Polish hard coal and lignite samples. Those coals are major fuels used for electricity generation in Poland. The results indicated that the average content of mercury in the coal samples was roughly about 100 ng/g. Apart from the determination of the mercury contents a detailed ultimate and proximate analysis of the coal samples was also carried out. The relationships between the mercury content and ash, as well as fixed carbon, volatile matter, sulfur, and high heating value of the coal samples were also established. Furthermore, the effect of coal enrichment was also investigated, and it was found that the enrichment process enabled the removal of up to 75% of the coal mercury from the samples.
Go to article

Abstract

The purpose of the investigation was to assess the suitability of sewage sludge, brown coal and a mix of sewage sludge and brown coal to be used for fertilizing a light soil with an increased content of lead (I0 ) and slightly contaminated with cadmium (II0 ). The subject of tests were soil and plant samples taken from a pot experiment conducted during the years 2007-2009. The tests determined the effect of the type of fertilization on the pH and sorption properties of the soil, the contents of heavy metals in the soil and in the plants, and the volume of crops. The fertilization types applied had an effect of slightly increasing the soil pH. The application of sewage sludge, brown coal and the mix of sewage sludge with brown coal to the soil resulted in an improvement of the sorption properties of the soil. In the soil treated with sewage sludge and the mix of sewage sludge with brown coal, an increase in the contents of Cd, Zn and Pb was found. This increase was, however, small and did not change the degree of soil contamination with heavy metals. In the above-ground parts of plants fertilized with brown coal the concentration of heavy metals was lower than in biomass from plants cultivated on the control combination. The application of sewage sludge and the mix of sewage sludge with brown coal generally resulted also in a reduction of metal contents in the above-ground parts of the plants. This was the effect of enriching the soil with an organic substance that improves the sorption properties. From among the fertilization combinations tested, the application of either sewage sludge or the mix of sewage sludge with brown coal had the most favourable effect on the crop volume. It resulted in a twofold increase in the yield compared to the control combination.
Go to article

Abstract

In order to prepare a coal company for the development of future events, it is important to predict how can evolve the key environmental factors. This article presents the most important factors influencing the hard coal demand in Poland. They have been used as explanatory variables during the creation of a mathematical model of coal sales. In order to build the coal sales forecast, the authors used the ARMAX model. Its validation was performed based on such accuracy measures as: RMSE, MAPE and Theil’s index. The conducted studies have allowed the statistically significant factors out of all factors taken into account to be identified. They also enabled the creation of the forecast of coal sales volume in Poland in the coming years. To maintain the predictability of the forecast, the mining company should continually control the macro environment. The proper demand forecast allows for the flexible and dynamic adjustment of production or stock levels to market changes. It also makes it possible to adapt the product range to the customer’s requirements and expectations, which, in turn, translates into increased sales, the release of funds, reduced operating costs and increased financial liquidity of the coal company. Creating a forecast is the first step in planning a hard coal mining strategy. Knowing the future needs, we are able to plan the necessary level of production factors in advance. The right strategy, tailored to the environment, will allow the company to eliminate unnecessary costs and to optimize employment. It will also help the company to fully use machines and equipment and production capacity. Thanks to these efforts, the company will be able to reduce production costs and increase operating profit, thus survive in a turbulent environment.
Go to article

Abstract

The research involved coal from 11 coal mines in the USCB in Poland, intended for combustion in power plants and for home furnaces. It has been stated that the content of As, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb and Zn in the ash of coal fines from the USCB with a density of <1.30 × 103 kg/m3 is the largest, and in the ash fraction with a density >2.00 × 103 kg/m3 is the smallest The fraction ash of coal fine with a density> 2.00 × 103 kg/m3 has the greatest impact on the content of As, Cd, Co, Cr, Mo, Pb and Zn in whole coal fines from the USCB. In turn, the largest impact on the content of Cu, Ni and Sb in whole fine coal ash has the fraction of coal fine having a density of 1.60–2.00 × 103 kg/m3 (for Cu) and fraction with a density <1.35 × 103 kg/m3 (Ni and Sb). The main carriers of elements in fine coal ash, thus in future furnace waste, are the grains of aluminosilicates and iron oxides resulting from the combustion of probably fusinite and semifusinite and the combustion of adhesions of these macerals with dolomite, ankerite and pyrite. The purification of fine coal from the matter with a density >2.00 × 103 kg/m3 may reduce the sulfur content (by 40%), the content of main element oxides (from 33% to 85%) and the content of ecotoxic elements (from 7% to 59%) in fine coal ash, i.e. in potential furnace wastes. Due to the small content of mineral matter, ash and sulfur in coal, small content of Al, Fe, Ca, Mg, Na, K, P oxides and high content of SiO2 in coal ash, low value of the Rogi sinterability index, small inclination of coal fine to slag the furnaces and boiler fouling by sludge, the investigated coal was favorable for technological reasons, fuel in power plants and for home furnaces
Go to article

Abstract

This paper presents the results of research focused on the lowering of ash flow temperature at semianthracite coal from Donbas district by means of additive (calcite) dosing. Ash fusion temperatures were set for two coal samples (A, B) and for five various states (samples of ash without any additives, with 1%, with 3%, with 5% and with 7% of the additive) in total. The macroscopicphotographic method was used for identifying all specific temperatures. Obtained outputs prove that A type coal has a lower value of sphere temperature than B type coal in the whole scope of percentage representation of the additive. The flow temperature dropped in total from 1489 °C to 1280 °C, i.e. by 14% during the test of coal of type A with 7% of the additive; while it was near 10% for coal of type B (from 1450 °C to 1308 °C). Numerical simulations of the process showed that it is not effective to add an additive with a grain size lower than 280 μm by means of wastevapour burners.
Go to article

Abstract

The paper presents results of coal behaviour during combustion in oxy-fuel atmosphere. The experiment was performed using 3 meter long Entrained Flow Reactor and 1 meter long Drop Tube Reactor. Three hard coals and two lignites were analysed in order to investigate NOx, SO2 emission and fly ash burnout. The measurements were performed along and at the outlet of a combustion chamber for one- and two - stage combustion. In the second stage of the experiment, kinetic parameters for nitrogen evolution during combustion in oxy - fuel and air were calculated and the division of nitrogen into the volatile matter and the char was measured. The conducted experiment showed that emissions in oxy - fuel are lower than those in air.
Go to article

Abstract

Over the past two years, coking coal prices have been the most volatile among major bulk commodities. On the supply side, the most important factor determining the movement of coal prices were weather problems affecting the exports of coal from Australia (Queensland), where the production of the best quality coking coals is concentrated. On the demand side, an important factor is the growing role of China on the market, which, being the world’s largest producer and consumer of metallurgical coal, has also become its largest importer. The dominant, about 75% share of China in the global spot market has resulted in their level of activity influencing the periodic price decreases or increases in international trade and prices based on CFR China (along with Australian FOB prices) have become important indicators to monitor market trends and determine levels of negotiated benchmarks. The exceptional volatility on the market led to a change in the quarterly price fixing mechanism for hard-load hard coal contractors in mid–2017 to apply a formula that assumes the valuation of their quarterly volumes based on the average of the basket of spot price indices. This reflects the broader trend of the evolving market, with growing spot market activity. The article describes the current situation on the international coking coal market and presents short-term forecasts for hard coking hard coal prices (PHCC LV), which are a reference point for fixing prices of other types of metallurgical coal (hard standard, semi-soft, PCI).
Go to article

Abstract

The coal fed to gravity enrichment consists of coals coming from different deposits and exploitation fronts. These coals differ in quality parameters, especially the amount of gangue (stone) changing over time. This results in the instability of work, especially jiggers, which have a relatively low accuracy assessed by probable scattering or imperfection rates. This deteriorates the quality of the concentrate obtained, the quality parameters of which change over time. The improvement of jiggers work would be possible by averaging the feed. This process is practically impossible due to the failure to design such a node during plant construction, which are, in most cases, directly related to the shaft. In the article, the authors propose to solve the process of averaging the feed before directing it to the enrichment process in jiggers by introducing its deshaling in vibratory- air separators of the FGX type.
Go to article

Abstract

Studies on the quality of bituminous coal are mainly focused on physico-chemical analysis, examining the ash content, sulphur content, volatile matter content, moisture content, and the Net Calorific Value of coal. Until now, the above mentioned parameters form the basis of the Polish Standard PN-82/87002, on the basis of which individual types of bituminous coal are determined. In addition, an elemental analysis, providing information about the content of primary elements in the organic matter of solids, i.e. coal, hydrogen, nitrogen, oxygen, and sulphur, is carried out for the selected samples. This issue has been studied by many authors, which undoubtedly provide invaluable knowledge due to the huge amount of data, but, as the authors themselves indicate, the knowledge of the petrography of coal, coking properties (Probierz et al. 2012) and finally the coke obtained from individual coal types (based on tests carried out using the Karbotest installation or the so-called „box tests” performed in the coke oven battery) is still very limited. The article discusses the impact of petrographic composition on the quality of metallurgical coke. The analysis was performed using samples of coking coal from the following mines: Pniówek, Zofiówka, Borynia, and Krupiński. The mentioned coal types are used to produce coke mixtures used for the production of coke in the Przyjaźń and Radlin coking plants. Based on the rank of coal and physicochemical parameters, the mentioned coal types were classified according to the Polish classification and the UN/ECE International Classification of In-Seam Coals (UN/ECE 1995). The prediction of thermomechanical properties of coke (CSR and CRI) performed according to the original CCP method were compared with the results obtained using the classical method of Nippon Steel Corporation.
Go to article

Abstract

The research of development capabilities is a fundamental of strategic issues, which has to be taken into consideration by coal mines. This is particularly difficult in the current environment, which is determined by its crisis situation. In such conditions, it is necessary to take difficult decisions, and serious, strategic challenges into account, which allow for the crisis to be overcome, for the renewal and economic effectiveness of the operation of these coal mines, which have potential to grow, and closing the coal mines, which have not potential to grow. Due to the effects of such decisions, which concern not only coal mines but also the Silesian region, it is essential to prepare information to support them and promote rational choices. This is related to the issue of research for development possibilities. The article presents considerations related to the subject of research for development possibilities of coal mines in a crisis situation. Taking the results of literature study into account, the model of research process was developed, and identified the research issues concerning the following: - the identification of external factors which determine the possibility of development of the Polish mines and drawing a schedule of their changes in the future, - the identification of internal factors which determine the possibility of development of the Polish mines, - developing a way for the assessment of the development potential of the coal mines, to show appropriate strategic options and action programmes for these options, - determining possible strategic options and corresponding schedules, appropriate for the specific nature of the mines. The proposition of their solutions, which were obtained in the process of using the specific methods and research tools, allowed the guidelines in terms of research of development capabilities of coal mines to be presented.
Go to article

Abstract

The implementation of EU environmental regulations in the energy sector is challenging for the power industry of its member states. The main role is played by documents such as the Winter Package and, especially, the Directive of the European Parliament and of the Council on the emission limits of certain pollutants and the implementation of BAT conclusions in order to achieve the EU’s decarbonization objectives. These regulations impose a greater need to control harmful substances emitted to the atmosphere while using fossil fuels, including hard coal, which is the main fuel for domestic units. At the same time, the decline in domestic fossil fuel production and decrease in the quality of parameters of the hard coal makes it difficult to purchase the proper fuel for power plants. As a consequence, the costs of hard coal increase. The article presents the concept of a mathematical model that can be applied for the optimization of coal supplies. The employment of this model allows one to achieve cost reductions. One of the advantages of the proposed tool, in addition to minimizing the cost of purchase and use of hard coal, is its rational management, especially for companies producing and using hard coal.
Go to article

Abstract

An uniaxial compression mechanical model for the roof rock-coal (RRC) composite sample was established in order to study the effects of height ratio of roof rock to coal on the structural strength of composite sample. The composite sample strengths under different height ratios were established through stress and strain analysis of the sample extracted from the interface. The coal strength near the interface is enhanced and rock strength near the interface weakened. The structural strength of composite sample is synthetically determined by the strengths of rock and coal near and far away from the interface. The area with a low strength in composite sample is destroyed firstly. An analytical model was proposed and discussed by conducting uniaxial compression tests for sandstone-coal composite samples with different height ratios, and it was found that the structural strength and elastic modulus decrease with a decrease in height ratio. The coal strengths far away from the interface determine the structural strengths of composite sample under different height ratios, which are the main control factor for the structural strength in this test. Due to its lowest strength, the rock near the interface first experienced a tensile spalling failure at the height ratio of 9:1, without causing the structural failure of composite sample. The coal failure induces the final failure of composite sample.
Go to article

Abstract

The paper analyzes the impact of potential changes in the price relation between domestic and imported coal and its influence on the volume of coal imported to Poland. The study is carried out with the application of a computable model of the Polish energy system. The model reflects fundamental relations between coal suppliers (domestic coal mines, importers) and key coal consumers (power plants, combined heat and power plants, heat plants, industrial power plants). The model is run under thirteen scenarios, differentiated by the ratio of the imported coal price versus the domestic coal price for 2020–2030. The results of the scenario in which the prices of imported and domestic coal, expressed in PLN/GJ, are equal, indicate that the volume of supplies of imported coal is in the range of 8.3–11.5 million Mg (depending on the year). In the case of an increase in prices of imported coal with respect to the domestic one, supplies of imported coal are at the level of 0.4–4.1 million Mg (depending on the year). With a decrease in the price of imported coal, there is a gradual increase in the supply of coal imports. For the scenario in which a 30% lower imported coal price is assumed, the level of imported coal almost doubles (180%), while the supply from domestic mines is reduced by around 28%, when compared to the levels observed in the reference scenario. The obtained results also allow for the development of an analysis of the range of coal imports depending on domestic versus imported coal price relations in the form of cartograms.
Go to article

Abstract

Trace elements contained in coal escape with flue gas from energy sources into the air or move towards other components of the environment with by-products captured in electrofilters (EF) and flue gas desulphurisation (FGD) plants. The existing knowledge about the distribution of frequently dangerous trace elements contained in these products is insufficient. Studies were therefore undertaken in selected power plants to investigate the distribution of trace elements in coal, slag, as well as dust containment and flue gas desulphurisation products, such as fly ash captured in dust collectors, desulphurisation gypsum and semi-dry scrubbing FGD products. Using the technique of flame atomic absorption spectrometry (F-AAS) and mercury analyser, the following were determined in the research material samples: Cr, Cu, Hg, Mn, Ni, Pb and Zn. The studies have a reconnaissance character. The authors have presented the results of determinations for selected trace elements in samples taken at Jaworzno III and Siersza Power Plants, which burn hard coal, and in Bełchatów Power Plant, burning brown coal. A balance of the examined trace elements in a stream of coal fed into the boiler and in streams of waste and products carried away from the plant was prepared. The balance based on the results of analyses from Bełchatów Power Plant was considered encouraging enough to undertake further investigations. The research confirmed that due to the distribution in the process of coal combustion and flue gas treatment, a dominant part of particular trace elements’ stream moves with solid waste and products, while air emission is marginal. Attention was paid to the importance of research preparation, the manner of sample taking and selection of analytical methods.
Go to article

Abstract

The aim of the article is to present the selected results of analytical investigations concerning possible directions of reducing the unit production costs in the mining company together with some results of practical calculations. The investigations emphasize the role of the rate of utilising the production capacity leading to reducing the unit production costs. The main component having an essential influence on the unit production costs are the fixed unit costs. Two basic indices of a crucial meaning for searching for possibilities leading to decreasing the unit production costs are assumed. The first index (w1) is a measure of the rate of utilising the production capacity, the second one (w2) concerns the fixed costs coincided with the unit of the production capacity. Theoretical considerations concerning the mathematical modelling of the unit production costs as the values depending on the rate of utilising the production capacity and the fixed costs coincided with the production capacity unit, are presented in the first part of the paper. The rationalisation criteria of the mine unit production costs are formulated. These criteria can constitute the elements of restructuring program for the mining company. The calculation example with the use of the practical input data shows the impact of the rate of utilising the production capacity on the mine unit production costs. In the example two variants of annual working time are taken into account. Results of appropriate calculations are presented and analysed in an aspect of reducing unit costs of production as a result of increasing rate of utilising the mine production capacity.
Go to article

Abstract

Households are the most significant group of consumers in the municipal and household sector in Poland. In 2010-2016, households consumed annually from 8.9 to 10.8 million Mg of coal (77-81% share in this sector). As of the beginning of 2018, seven voivodships in Poland have already introduced anti-smog resolutions, one has its draft, three are considering introduction of such resolutions. In the face of introducing anti-smog resolutions, the analysis of coal consumption by households was conducted for a situation where anti-smog resolutions will be introduced in all voivodships in Poland. A forecast of hard coal consumption by Polish households in 2017-2030 was presented in the article. Two scenarios differentiated in terms of calorific value of coal were taken into account: (i) concerned coal with a calorific value of 24 MJ/kg (min. Q for eco-pea coal: grain size 5.0-31.5 mm), (ii) – coals with a calorific value of 26 MJ/kg (Q recommended for use by producers of class 5 boilers). In the perspective of 2030, the largest decrease in hard coal consumption can be expected (jointly) in the voivodships of Śląskie, Dolnośląskie, Opolskie and Lubuskie. Under the assumptions made, in relation to 2016, it may be reduced by half and fall from 2.8 to the level of 1.4-1.5 million Mg. The smallest decreases in consumption may occur (jointly) in the Małopolskie, Lubelskie, Podkarpackie and Świętokrzyskie voivodships – decrease by 16-22% and fall from 2.6 to approximately 1.9-2.0 million Mg. On a national scale, coal consumption may decrease from the current 10.4 (2016) to around 6.3-6.8 million Mg (a decrease of 30-35%). Despite the decrease in hard coal consumption in the 2030 perspective, one should expect an increase in demand for high quality coal dedicated to modern boilers (usually pea assortments) as well as qualified coal fuels (mainly eco-pea coal).
Go to article

Abstract

The paper presents current reports on kinetics and mechanisms of reactions with mercury which take place in the exhaust gases, discharged from the processes of combustion of solid fuels (coals). The three main stages were considered. The first one, when thermal decomposition of Hg components takes place together with formation of elemental mercury (Hg0). The second one with homogeneous oxidation of Hg0 to Hg2+ by other active components of exhaust gases (e.g. HCl). The third one with heterogeneous reactions of gaseous mercury (the both - elemental and oxidised Hg) and solid particles of fl y ash, leading to generation of particulate-bound mercury (Hgp). Influence of exhaust components and their concentrations, temperature and retention time on the efficiency of mercury oxidation was determined. The issues concerning physical (gas-solid) and chemical speciation of mercury (fractionation Hg0-Hg2+) as well as factors which have influence on the mercury speciation in exhaust gases are discussed in detail.
Go to article

This page uses 'cookies'. Learn more