Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 77
items per page: 25 50 75
Sort by:

Abstract

The paper presents results of measuring thermal conductivity and heat capacity of bentonite foundry sand in temperature range ambient – 900 OC. During the experiments a technical purity Cu plate was cast into the green-sand moulds. Basing on measurements of the mould temperature field during the solidification of the casting, the temperature relationships of the measured properties were evaluated. It was confirmed that water vaporization strongly influences thermal conductivity of the moulding sand in the first period of the mould heating by the poured casting.
Go to article

Abstract

In the high-alloy, ferritic - austenitic (duplex) stainless steels high tendency to cracking, mainly hot-is induced by micro segregation processes and change of crystallization mechanism in its final stage. The article is a continuation of the problems presented in earlier papers [1 - 4]. In the range of high temperature cracking appear one mechanism a decohesion - intergranular however, depending on the chemical composition of the steel, various structural factors decide of the occurrence of hot cracking. The low-carbon and low-alloy cast steel casting hot cracking cause are type II sulphide, in high carbon tool cast steel secondary cementite mesh and / or ledeburite segregated at the grain solidified grains boundaries, in the case of Hadfield steel phosphorus - carbide eutectic, which carrier is iron-manganese and low solubility of phosphorus in high manganese matrix. In duplex cast steel the additional factor increasing the risk of cracking it is very "rich" chemical composition and related with it processes of precipitation of many secondary phases.
Go to article

Abstract

The paper presents the results of research on the impact of impurities in the feed ingots (master heat) on the precipitation of impurities in the ATD thermal analysis probe castings. This impurities occur mostly inside shrinkage cavities and in interdendritic space. Additionally, insufficient filtration of liquid alloy during pouring promotes the transfer of impurities into the casting. The technology of melting superalloys in vacuum furnace prevents the removal of slag from the surface of molten metal. Because of that, the effective method of quality assessment of feed ingots in order to evaluate the existence of impurities is needed. The effectiveness of ATD analysis in evaluation of purity of feed ingots was researched. In addition the similarities of non-metallic inclusions in feed ingots and in castings were observed.
Go to article

Abstract

Investigation of the tensile and fatigue properties of cast magnesium alloys, created by the heated mold continuous casting process (HMC), was conducted. The mechanical properties of the Mg-HMC alloys were overall higher than those for the Mg alloys, made by the conventional gravity casting process (GC), and especially excellent mechanical properties were obtained for the Mg97Y2Zn1 -HMC alloy. This was because of the fine-grained structure composed of the -Mg phases with the interdendritic LPSO phase. Such mechanical properties were similar levels to those for conventional cast aluminum alloy (Al84.7Si10.5Cu2.5Fe1.3Zn1 alloys: ADC12), made by the GC process. Moreover, the tensile properties (UTS and f ) and fatigue properties of the Mg97Y2Zn1 -HMC alloy were about 1.5 times higher than that for the commercial Mg90Al9Zn1 -GC alloy (AZ91). The high correlation rate between tensile properties and fatigue strength (endurance limit: l ) was obtained. With newly proposed etching technique, the residual stress in the Mg97Y2Zn1 alloy could be revealed, and it appeared that the high internal stress was severely accumulated in and around the long-period stacking-order phases (LPSO). This was made during the solidification process due to the different shrinkage rate between α-Mg and LPSO. In this etching technique, microcracks were observed on the sample surface, and amount of micro-cracks (density) could be a parameter to determine the severity of the internal stress, i.e., a large amount to micro-cracks is caused by the high internal stress.
Go to article

Abstract

Paper present a thermal analysis of laser heating and remelting of EN AC-48000 (EN AC-AlSi12CuNiMg) cast alloy used mainly for casting pistons of internal combustion engines. Laser optics were arranged such that the impingement spot size on the material was a circular with beam radius rb changes from 7 to 1500 m. The laser surface remelting was performed under argon flow. The resulting temperature distribution, cooling rate distribution, temperature gradients and the depth of remelting are related to the laser power density and scanning velocity. The formation of microstructure during solidification after laser surface remelting of tested alloy was explained. Laser treatment of alloy tests were perform by changing the three parameters: the power of the laser beam, radius and crystallization rate. The laser surface remelting needs the selection such selection of the parameters, which leads to a significant disintegration of the structure. This method is able to increase surface hardness, for example in layered castings used for pistons in automotive engines.
Go to article

Abstract

In a vacuum Bridgman-type furnace, under an argon atmosphere, directionally solidified sample of Fe - C alloy was produced. The pulling rate was v = 83 μm/s (300 mm/h) and constant temperature gradient G = 33,5 K/mm. The microstructure of the sample was examined on the longitudinal section using an Optical Microscope and Scanning Electron Microscope. The X-ray diffraction and electron backscatter diffraction technique (EBSD) have been used for the crystallographic analysis of carbide particles in carbide eutectic. The X-ray diffraction was made parallel and perpendicular to the axis of the goniometer. The EBSD shows the existence of iron carbide Fe3C with orthorhombic and hexagonal structure. Rapid solidification may cause a deformation of the lattice plane which is indicated by different values of the lattice parameters. Such deformation could also be the result of directional solidification. Not all of the peaks in X–ray diffractograms were identified. They may come from other iron carbides. These unrecognized peaks may also be a result of the residual impurity of alloy.
Go to article

Abstract

Determination of the ferrite content in austenitic steels, which solidified under defined conditions. Ferrite content in austenitic matrix was determined from samples with wall thickness of 60 mm. Measured ferrite contents served to propose the regression equations for the calculation of the ferrite content in steels with Cr content of 18 up to 22 % and Ni of 9 up to 11 %. An additional regression equation was proposed for steels with a higher Ni content. The proposed regression equations have been checked up on the operating melts. In conclusion, the ferrite content in the axis of the casting of wall thickness of 500 mm has been calculated and it was compared to the ferrite determined in the usual way from the cast-on test.
Go to article

Abstract

In Part I of this article, two-stage solidification model was presented. In this part we use our model to simulate solidification of the Al 7% Si alloy for two cooling rates and . Simulations have been performed for two eutectic transformation modes, typical for modified and unmodified alloys. Obtained cooling curves are qualitatively consistent with the typical cooling curves for modified and unmodified alloys. Moreover, evolution of cooling-curve characteristics is compared with the analytical model and found to be in close agreement.
Go to article

Abstract

Mg-0.5Si-xSn (x=0.95, 2.9, 5.02wt.%) alloys were cast and extruded at 593K (320 ºC) with an extrusion ratio of 25. The microstructure and mechanical properties of as-cast and extruded test alloys were investigated by OM, SEM, XRD and tensile tests. The experimental results indicate that the microstructure of the Mg-0.5Si-xSn alloys consists of primary α-Mg dendrites and an interdendritic eutectic containing α-Mg, Mg2Si and Mg2Sn. There is no coarse primary Mg2Si phase in the test alloys due to low Si content. With the increase in the Sn content, the Mg2Si phase was refined. The shape of Mg2Si phase was changed from branch to short bar, and the size of them were reduced. The ultimate tensile strength and yield strength of Mg-0.52Si-2.9Sn alloy at the temperature of 473K (200 ºC) reach 133MPa and 112MPa respectively. Refined eutectic Mg2Si phase and dispersed Mg2Sn phase with good elevated temperature stability are beneficial to improve the elevated temperature performance of the alloys. However, with the excess addition of Sn, large block-like Mg2Sn appears around the grain boundary leading to lower mechanical properties.
Go to article

Abstract

Directional solidification of the Fe - 4,3 wt % C alloy was performed with the pulling rate equal to v=83 μm/s. Sample was frozen during solidification to reveal the shape of the solid/liquid interface. Structures eutectic pyramid and spherolitic eutectic were observed. The solidification front of ledeburite eutectic was revealed. The leading phase was identified and defined.
Go to article

Abstract

In this paper, the mathematical model and numerical simulations of the molten steel flow by the submerged entry nozzle and the filling process of the continuous casting mould cavity are presented. In the mathematical model, the temperature fields were obtained by solving the energy equation, while the velocity fields were calculated by solving the momentum equations and the continuity equation. These equations contain the turbulent viscosity which is found by solving two additional transport equations for the turbulent kinetic energy and its rate of dissipation. In the numerical simulations, coupling of the thermal and fluid flow phenomena by changes in the thermophysical parameters of alloy depending on the temperature has been taken into consideration. This problem (2D) was solved by using the finite element method. Numerical simulations of filling the continuous casting mould cavity were performed for two variants of liquid metal pouring. The effect of the cases of pouring the continuous casting mould on the velocity fields and the solid phase growth kinetics in the process of filling the continuous casting mould was evaluated as these magnitudes have an influence on the high quality of the continuous cast steel slab.
Go to article

Abstract

The paper presents a new numerical model of solidification processes in hypoeutectic alloys. The model combines stochastic elements, such as e.g. random nucleation sites and orientation of dendritic grains, as well as deterministic methods e.g. to compute velocity of dendritic tips and eutectic grains. The model can be used to determine the temperature and the size of structure constituents (of both, the primary solid phase and eutectics) and the arrangement of individual dendritic and eutectic grains in the consecutive stages of solidification. Two eutectic transformation modes, typical to modified and unmodified hypoeutectic alloys, have been included in the model. To achieve this, cellular automata and Voronoi diagrams have been utilized.
Go to article

Abstract

A eutectic reaction is a basic liquid-solid transformation, which can be used in the fabrication of high-strength in situ composites. In this study an attempt was made to ensure directional solidification of Fe-C-V alloy with hypereutectic microstructure. In this alloy, the crystallisation of regular fibrous eutectic and primary carbides with the shape of non-faceted dendrites takes place. According to the data given in technical literature, this type of eutectic is suitable for the fabrication of in-situ composites, owing to the fact that a flat solidification front is formed accompanied by the presence of two phases, where one of the phases can crystallise in the form of elongated fibres. In the present study an attempt was also made to produce directionally solidifying vanadium eutectic using an apparatus with a very high temperature gradient amounting to 380 W/cm at a rate of 3 mm/h. Alloy microstructure was examined in both the initial state and after directional solidification. It was demonstrated that the resulting microstructure is of a non-homogeneous character, and the process of directional solidification leads to an oriented arrangement of both the eutectic fibres and primary carbides.
Go to article

Abstract

The paper presents results of measuring heat diffusivity and thermal conductivity coefficients of used green foundry sand in temperature range ambient – 600 o C. During the experiments a technical purity Cu plate was cast into the green-sand moulds. Basing on measurements of the mould temperature field during the solidification of the casting, the temperature relationships of the measured properties were evaluated. It was confirmed that the obtained relationships are complex and that water vaporization strongly influences thermal conductivity of the moulding sand in the first period of the mould heating by the poured and solidified casting
Go to article

Abstract

Simulation software dedicated for design of casting processes is usually tested and calibrated by comparisons of shrinkage defects distribution predicted by the modelling with that observed in real castings produced in a given foundry. However, a large amount of expertise obtained from different foundries, including especially made experiments, is available from literature, in the form of recommendations for design of the rigging systems. This kind of information can be also used for assessment of the simulation predictions. In the present work two parameters used in the design of feeding systems are considered: feeding ranges in horizontal and vertical plates as well as efficiency (yield) of feeders of various shapes. The simulation tests were conducted using especially designed steel and aluminium castings with risers and a commercial FDM based software. It was found that the simulations cannot predict appearance of shrinkage porosity in horizontal and vertical plates of even cross-sections which would mean, that the feeding ranges are practically unlimited. The yield of all types of feeders obtained from the simulations appeared to be much higher than that reported in the literature. It can be concluded that the feeding flow modelling included in the tested software does not reflect phenomena responsible for the feeding processes in real castings properly. Further tests, with different types of software and more fundamental studies on the feeding process modelling would be desirable.
Go to article

Abstract

The paper presents the cellular automaton (CA) model for tracking the development of dendritic structure in non-equilibrium solidification conditions of binary alloy. Thermal, diffusion and surface phenomena have been included in the mathematical description of solidification. The methodology for calculating growth velocity of the liquid-solid interface based on solute balance, considering the distribution of the alloy component in the neighborhood of moving interface has been proposed. The influence of solidification front curvature on the equilibrium temperature was determined by applying the Gibbs Thomson approach. Solute and heat transfer equations were solved using the finite difference method assuming periodic boundary conditions and Newton cooling boundary condition at the edges of the system. The solutal field in the calculation domain was obtained separately for solid and liquid phase. Numerical simulations were carried out for the Al-4 wt.% Cu alloy at two cooling rates 15 K/s and 50 K/s. Microstructure images generated on the basis of calculations were compared with actual structures of castings. It was found that the results of the calculations are agreement in qualitative terms with the results of experimental research. The developed model can reproduce many morphological features of the dendritic structure and in particular: generating dendritic front and primary arms, creating, extension and coarsening of secondary branches, interface inhibition, branch fusion, considering the coupled motion and growth interaction of crystals.
Go to article

Abstract

In the paper the thermal processes proceeding in the solidifying metal are analyzed. The basic energy equation determining the course of solidification contains the component (source function) controlling the phase change. This component is proportional to the solidification rate ¶ fS/¶ t (fS Î [0, 1], is a temporary and local volumetric fraction of solid state). The value of fS can be found, among others, on the basic of laws determining the nucleation and nuclei growth. This approach leads to the so called micro/macro models (the second generation models). The capacity of internal heat source appearing in the equation concerning the macro scale (solidification and cooling of domain considered) results from the phenomena proceeding in the micro scale (nuclei growth). The function fS can be defined as a product of nuclei density N and single grain volume V (a linear model of crystallization) and this approach is applied in the paper presented. The problem discussed consists in the simultaneous identification of two parameters determining a course of solidification. In particular it is assumed that nuclei density N (micro scale) and volumetric specific heat of metal (macro scale) are unknown. Formulated in this way inverse problem is solved using the least squares criterion and gradient methods. The additional information which allows to identify the unknown parameters results from knowledge of cooling curves at the selected set of points from solidifying metal domain. On the stage of numerical realization the boundary element method is used. In the final part of the paper the examples of computations are presented.
Go to article

Abstract

The aim of this paper was to attain defect free, pure copper castings with the highest possible electrical conductivity. In this connection, the effect of magnesium additives on the structure, the degree of undercooling (ΔTα = Tα-Tmin, where Tα – the equilibrium solidification temperature, Tmin – the minimum temperature at the beginning of solidification), electrical conductivity, and the oxygen concentration of pure copper castings have been studied. The two magnesium doses have been investigated; namely 0.1 wt.% and 0.2 wt.%. A thermal analysis was performed (using a type-S thermocouple) to determine the cooling curves. The degree of undercooling and recalescence were determined from the cooling and solidification curves, whereas the macrostructure characteristics were conducted based on a metallographic examination. It has been shown that the reaction of Mg causes solidification to transform from exogenous to endogenous. Finally, the results of electrical conductivity have been shown as well as the oxygen concentration for the used Mg additives.
Go to article

Abstract

The paper analyses specific defects of castings produced by semi-solid casting process, especially rheocasting method SEED, which uses mechanical swirling for reaching proper structure in semisolid state with high content of solid fraction. Heat treated alloy AlSi7Mg0.3 was applied for producing an Engine Bracket casting part. For observing structure, metallographic observation by light and SEM microscopy was used. To analyse the process, software ProCAST was used to simulate the movements in shot chamber and filling of the mold.
Go to article

Abstract

The validation of each simulation code used in foundry domain requires individual approach due to its specificity. This validation can by elaborated on the basis of experimental results or in particular cases by comparison the simulation results from different codes. The article concerns the influence of grey cast iron density curve and different forms of solid fraction curve Fs=f(T) on the formation of shrinkage discontinuities. Solid fraction curves applying Newtonian Thermal Analysis (NTA) were estimated. The experimental and numerical simulation tests were performed on the castings, which were made with Derivative Thermal Analysis (DerTA) standard cups. The numerical tests were realized using NovaFlow&Solid (NF&S), ProCast and Vulcan codes. In this work, the coupled influence of both curves on the dynamics of the shrinkage-expansion phenomena and on shrinkage defects prognosis in grey cast iron castings has been revealed. The final evaluation of the simulation systems usefulness should be based on validation experiment, preceded by comparing the simulation results of available systems which are proposed in given technology.
Go to article

Abstract

High-alloy corrosion-resistant ferritic-austenitic steels and cast steels are a group of high potential construction materials. This is evidenced by the development of new alloys both low alloys grades such as the ASTM 2101 series or high alloy like super or hyper duplex series 2507 or 2707 [1-5]. The potential of these materials is also presented by the increasing frequency of sintered components made both from duplex steel powders as well as mixtures of austenitic and ferritic steels [6, 7]. This article is a continuation of the problems presented in earlier works [5, 8, 9] and its inspiration were technological observed problems related to the production of duplex cast steel. The analyzed AISI A3 type cast steel is widely used in both wet exhaust gas desulphurisation systems in coal fired power plants as well as in aggressive working environments. Technological problems such as hot cracking presented in works [5, 8], with are effects of the rich chemical composition and phenomena occurring during crystallization, must be known to the technologists. The presented in this work phenomena which occur during the crystallization and cooling of ferritic-austenitic cast steel were investigated using numerical methods with use of the ThermoCalc and FactSage® software, as well with use of experimental thermal-derivative analysis.
Go to article

Abstract

In contrast to casting to conventional non-reusable “sand” moulds, for which calculating technique for an optimum design of the gating system is comparatively well-developed, a trial-and-error method is applied mostly for casting to ceramic shell moulds made by the investment casting technology. A technologist selects from gating systems of several types (that are standardized by the foundry mostly) on the basis of experience. However, this approach is not sustainable with ever growing demands on quality of castings and also the economy of their fabrication as well as with new types of complex sizeable castings introduced to the production gradually (by new customers from the aircraft industry above all) any more. The simulation software may be used as a possible tool for making the process of optimising gating systems more effective.
Go to article

Abstract

Particles of the Fe-Al type (less than 50 µm in diameter) were sprayed onto the 045 steel substrate by means of the detonation method. The TEM, SAED and EDX analyses revealed that the Fe-Al particles have been partially melted in the experiment of coating formation. Particle undergone melting even within about 80% of its volume. Therefore, solidification of the melted part of particles was expected. Solidification differed significantly due to a large range of chemical composition of applied particles (from 15 at.% Al up to 63 at.% Al). A single particle containing 63 at.% Al was subjected to the detailed analysis, only. The TEM / SAED techniques revealed in the solidified part of particle three sub-layers: an amorphous phase, A ε , periodically situated FeAl + Fe2Al5 phases, and a non-equilibrium phase, Nε . A hypothesis dealing with the inter-metallic phases formation in such a single particle of the nominal composition 0 N = 0.63 is presented. At first, the solid / liquid system is treated as an interconnection: substrate liquid nonmelted particle part / / . Therefore, it is suggested that the solidification occurs simultaneously in two directions: towards a substrate and towards a non-melted part of particle. The solidification mechanism is referred to the Fe-Al meta-stable phase diagram. It is shown that the melted part of particle solidifies rapidly according to the phase diagram of meta-stable equilibrium and at a significant deviation from the thermodynamic equilibrium.
Go to article

Abstract

Iron is the most common and detrimental impurity in casting alloys and has been associated with many defects. The main consequence of the presence or adding of iron to AlSi alloys is the formation Fe-rich intermetallics with especially deleterious β-Al5FeSi. β-Al5FeSi phases are most often called needles on 2D micro sections, whilst platelets in 3D geometry. The x-ray tomography results have demonstrated Ferich phases with shapes different from simple forms such as needles or platelets and presented bent and branched phases. β grown as complicated structure of bent and branched intermetallics can decrease feeding ability, strengthen pores nucleation and eutectic colonies nucleation leading to lower permeability of mushy zone and porosity in the castings.
Go to article

This page uses 'cookies'. Learn more