Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 129
items per page: 25 50 75
Sort by:

Abstract

The main objective of this work is to provide a closed formula for the backward and symmetric solution of the 2-D implicit Roesser model. The relative forward and backward fundamental matrix is of fundamental importance in our approach. An algorithm for the determination of the backward fundamental matrix sequense is also given.
Go to article

Abstract

In this work synthesis, sintering processes and properties of three groups of perovskite-type ceramics utilized in chosen electronic applications are briefly described. The first group includes high permittivity dielectrics based on relaxor ferroelectrics and new leadfree ceramics, destined for bulk and thick film capacitors. The second group comprises ceramics for low and high temperature thermistors and the third one nonstoichiometric conducting compounds containing doped SrMnO3 and SrCoO3, tested as electrode materials for solid state cells.
Go to article

Abstract

The paper presents the results of numerical simulation of processes aimed at production of nanostructures with the use of oil emulsions in water. The appropriate molecular models of water and oil, as well as the model of the substance which would sediment at the water – oil interface, are looked for. Such substance, after suitable solidification, would become the main component of the produced material. For the described simulations, the Molecular Dynamics method has been used throughout this paper.
Go to article

Abstract

Effects of confinement on mechanical, structural and thermodynamic properties of uniform fluids are very well understood. In contrast, a general theory based on statistical thermodynamics for confined nonuniform and non-isotropic phases, such as the lamellar phase, is in its infancy. In this review we focus on the lamellar phase confined in a slit or in a pipe in order to illustrate various effects of confinement. We limit ourselves to the results obtained by M. Tasinkevych, V. Babin and the author for lamellar phases in oil-water-surfactant mixtures within a generic semi-microscopic model, using a mean-field approximation. We show that compared to isotropic fluids the excess grand potential contains additional terms associated with structural deformations. These terms depend on the type of the confining walls, the shape of the container and on the thickness of the lamella. As a result of the dependence of the structure of the confined lamellar phase on the shape of the container, capillary lamellarization and capillary delamellarization is found in slits and in pipes respectively.
Go to article

Abstract

The paper deals with the problem of electromagnetic field analysis for linear, cylindrical and spherical electromechanical converters at synchronous state of work. There are considered synchronous motor with windings on moving part (rotor, carriage) and with permanent magnets thereon. The electromagnetic field is determined analytically with the help of separation method proposed for each problem. The boundary conditions are formulated for electromechanical converters linear, cylindrical and spherically shaped. The results obtained can be used as benchmark for electromagnetic field numerical analysis and force/torque calculations.
Go to article

Abstract

The paper discusses the stability problem for continuous time and discrete time positive systems. An alternative formulation of stability criteria for positive systems has been proposed. The results are based on a theorem of alternatives for linear matrix inequality (LMI) feasibility problem, which is a particular case of the duality theory for semidefinite programming problems.
Go to article

Abstract

A new class of positive hybrid linear systems is introduced. The solution of the hybrid system is derived and necessary and sufficient condition for the positvity of the class of hybrid systems are established. The classical Cayley-Hamilton theorem is extended for the hybrid systems. The reachability of the hybrid system is considered and sufficient conditions for the reachability are established. The considerations are illustrated by a numerical example.
Go to article

Abstract

We present a review of recent technical developments in Lattice Boltzmann Equations, as applied to single-phase flows with and without slip lenghts at the wall and for multi-phase flows in presence of hydrophobic walls. The interplay between roughness and hydrophobicity is discussed for microfluidics application. The issue of finite Knudsen effects is also addressed.
Go to article

Abstract

In the paper an application of differential evolution algorithm to design digital filters with non-standard amplitude characteristics is presented. Three filters with characteristics: linearly growing, linearly falling, and non-linearly growing are designed with the use of the proposed method. The digital filters obtained using this method are stable, and their amplitude characteristics fulfill all design assumptions.
Go to article

Abstract

Mesoscale flows of liquid are of great importance for various nano- and biotechnology applications. Continuum model do not properly capture the physical phenomena related to the diffusion effects, such as Brownian motion. Molecular approach on the other hand, is computationally too expensive to provide information relevant for engineering applications. Hence, the need for a mesoscale approach is apparent. In recent years many mesoscale models have been developed, particularly to study flows of gas. However, mesoscale behaviour of liquid substantially differs from that of gas. This paper presents a numerical study of micro-liquids phenomena by a Voronoi Dissipative Particle Dynamics method. The method has its origin from the material science field and is one of very few numerical techniques which can describe correctly molecular diffusion processes in mesoscale liquids. This paper proves that correct prediction of molecular diffusion effects plays predominant role on the correct prediction of behaviour of immersed structures in the mesoscopic flow.
Go to article

Abstract

The synthesis problem for optimal control systems in the class of discrete controls is under consideration. The problem is investigated by reducing to a linear programming (LP) problem with consequent use of a dynamic version of the adaptive method of LP. Both perfect and imperfect information on behavior of control system cases are studied. Algorithms for the optimal controller, optimal estimators are described. Results are illustrated by examples.
Go to article

Abstract

A complete parametric approach is proposed for the design of the Luenberger type function Kx observers for descriptor linear systems. Based on a complete parametric solution to a class of generalized Sylvester matrix equations, parametric expressions for all the coefficient matrices of the observer are derived. The approach provides all the degrees of design freedom, which can be utilized to achieve some additional design requirements. An illustrative example shows the effect of the proposed approach.
Go to article

Abstract

New tests (criterions) for checking the reachability and the observability of positive linear-discrete-time systems are proposed. The tests do not need checking of rank conditions of the reachability and observability matrices of the systems. Simple sufficient conditions for the unreachability and unobservability of the systems are also established.
Go to article

Abstract

A number of micromechanical investigations have been performed to predict behaviour of composite interfaces, showing that the detailed behaviour of the material at these interfaces frequently dominates the behaviour of the composite as a whole. The interfacial interaction is an extremely complex process due to continuous evolution of interfacial zones during deformation and this is particularly true for carbon nanotubes since the interfacial interaction is confined to the discrete molecular level. The atomic strain concept based upon Voronoi tessellation allows analyzing the molecular structure atom by atom, which may give a unique insight into deformation phenomena operative at molecular level such as interface behaviour in nanocomposites.
Go to article

Abstract

The paper presents the application of the newly developed method of the solution of nonlinear equations to the adaptive modelling and computer simulation. The approach is suitable when the system of equations can be arranged in such a way that it consists of a large number of linear equations and a smaller number of nonlinear equations. This situation occurs in the case of adaptive modelling of mechanical systems using finite elements or finite differences techniques. In this case the classical least square method becomes very effective. The paper presents several examples of the application of the method. A solution to the, so called, “black box” problem is also presented.
Go to article

Abstract

In the paper the thermal processes proceeding in the solidifying metal are analyzed. The basic energy equation determining the course of solidification contains the component (source function) controlling the phase change. This component is proportional to the solidification rate ¶ fS/¶ t (fS Î [0, 1], is a temporary and local volumetric fraction of solid state). The value of fS can be found, among others, on the basic of laws determining the nucleation and nuclei growth. This approach leads to the so called micro/macro models (the second generation models). The capacity of internal heat source appearing in the equation concerning the macro scale (solidification and cooling of domain considered) results from the phenomena proceeding in the micro scale (nuclei growth). The function fS can be defined as a product of nuclei density N and single grain volume V (a linear model of crystallization) and this approach is applied in the paper presented. The problem discussed consists in the simultaneous identification of two parameters determining a course of solidification. In particular it is assumed that nuclei density N (micro scale) and volumetric specific heat of metal (macro scale) are unknown. Formulated in this way inverse problem is solved using the least squares criterion and gradient methods. The additional information which allows to identify the unknown parameters results from knowledge of cooling curves at the selected set of points from solidifying metal domain. On the stage of numerical realization the boundary element method is used. In the final part of the paper the examples of computations are presented.
Go to article

Abstract

In the paper, a solution to the problem of elastic deformation of thin-walled shell structures with complex shapes within the theory of geometrically non-linear shells has been presented. It is a modification of the Newton-Raphson method. In a variational formulation, the problem is based on a Lagrange’s functional for increments of displacements. The method has been applied to investigations of a harmonic drive, in particular to analysis of the stress state in the flexspline with a variable curvature as well as bearings of the generator. For verification of the obtained results, a more adequate FEM model calculated by ANSYS has been used.
Go to article

Abstract

The paper explains the force induced by the electrostatic field on the electron as a recoil force. The starting point is the hypothesis that in the dynamic equilibrium with the vacuum, the electron simultaneously absorbs and emitts energy. With no external electrostatic field the radiation patterns of absorption and emission are assumed to be isotropic. The external electrostatic field induces anisotropy of the emission resulting in a recoil force. The paper presents a theoretical description of this force using a model of the angular power density pattern of the emission in the form of an ellipsoid. Calculations show that the total radiated power is extremely high. This radiation is compared with the electromagnetic radiation of the electron on the Bohr orbit in the idealized hydrogen atom. An analogous problem for gravitational forces is presented.
Go to article

Abstract

We propose a novel magnetic field sensitive semiconductor device, viz., Horizontally-Split-Drain Magnetic-Field Sensitive Field-Effect Transistor (HSDMAGFET) which can be used to measure or detect steady or variable magnetic fields. Operating principle of the transistor is based on one of the galvanomagnetic phenomena and a Gradual Channel Detachment Effect (GCDE) and is very similar to that of Popovic and Baltes's SDMAGFET. The predicted absolute sensitivity of the new sensor can reach as high value as 1000 V/T. Furthermore, due to its original structure, the spatial resolution of the new MAGFET is very high which makes this device especially useful in reading magnetically encoded data or magnetic pattern recognition.
Go to article

Abstract

We present a mesoscopic model able to capture the physics of drops moving across patterned surfaces. In this model, interfaces appear naturally, and both chemical and topological patterning can be incorporated with relative ease, making it particularly suitable to study the behaviour of evolving drops.We summarise results on drop dynamics, including drops spreading on a chemically patterned surface, using a hydrophobic grid to alleviate mottle and the transition and dynamics of drops moving across a superhydrophobic surface.
Go to article

Abstract

The paper presents the theoretical background, computer model, laboratory measurements and SPICE simulation results of a 323 W, 1 MHz Class E inverter operating with an efficiency of 97%. The inverter is built around a CoolMOS transistor from Infineon Technologies. The transistor belongs to a new generation of high quality, optimized for low conduction losses and high speed switching power MOSFET-s. The presented computer model of Class E inverter is based on a state-space description and allows computing the inverter parameters for the optimum operation. Its validity has been confirmed experimentally. The SPICE simulation of the inverter has been also carried out in order to obtain better agreement between measurement and calculation results.
Go to article

Abstract

The pool boiling characteristics of dilute dispersions of alumina, zirconia and silica nanoparticles in water were studied. These dispersions are known as nanofluids. Consistently with other nanofluid studies, it was found that a significant enhancement in Critical Heat Flux (CHF) can be achieved at modest nanoparticle concentrations (<0.1% by volume). Buildup of a porous layer of nanoparticles on the heater surface occurred during nucleate boiling. This layer significantly improves the surface wettability, as shown by a reduction of the static contact angle on the nanofluid-boiled surfaces compared with the pure-water-boiled surfaces. CHF theories support the nexus between CHF enhancement and surface wettability changes. This represents a first important step towards identification of a plausible mechanism for boiling CHF enhancement in nanofluids.
Go to article

Abstract

A novel current-inversion type negative impedance converter (CNIC) is presented. It is built without the use of any resistors. Furthermore, a second-order low-pass filter based on this CNIC is also analysed. It shows a bandwidth of 50 MHz at 320 µW power consumption and 2 V supply voltage when realized in a 0.35 µm CMOS process.
Go to article

Abstract

Some materials-related microstructural problems calculated using the phase-field method are presented. It is well known that the phase field method requires mesh resolution of a diffuse interface. This makes the use of mesh adaptivity essential especially for fast evolving interfaces and other transient problems. Complex problems in 3D are also computationally challenging so that parallel computations are considered necessary. In this paper, a parallel adaptive finite element scheme is proposed. The scheme keeps the level of node and edge for 2D and level of node and face for 3D instead of the complete history of refinements to facilitate derefinement. The information is local and exchange of information is minimized and also less memory is used. The parallel adaptive algorithms that run on distributed memory machines are implemented in the numerical simulation of dendritic growth and capillary-driven flows.
Go to article

Abstract

The present contribution reports on the rheological investigations concerning influence of high hydrostatic pressure on the molecular structure of gelatin gels. For the purpose of the study, a torsional shear wave rheometer for in-situ investigations of viscoelastic substances under high pressure was developed. Small amplitude vibrations generated by piezoelectric elements are used to determine the storage modulus of the investigated medium. The system is able to stand pressures up to 300 MPa. The experiments have been carried out with household gelatin (0.1 w/w aqueous solution). The gelification curves revealed similar time course. However, the values of G0 obtained for the gels curing 300 minutes under 100 MPa and 200 MPa were observed to be respectively 2.1 and 4 times higher than at ambient conditions. The increased number of triple helix junction zones is hypothesised to be the cause of this phenomenon as a result of reinforcement of the hydrogen bonds due to pressure. An attempt to cognize the characteristic dimensions of the molecular structure based on the theory of rubber elasticity is made.
Go to article

This page uses 'cookies'. Learn more