Search results

Filters

  • Journals
  • Date

Search results

Number of results: 55
items per page: 25 50 75
Sort by:

Abstract

This study is aimed at measuring the effect of pig, cow, horse and poultry manures on the degradation of selected Polycyclic Aromatics Hydrocarbons present in oil sludge. Four kilograms of soil amended with 1.2 kg of oil sludge was mixed with wood chips in a ratio of 1:2 (w:v) soil mixture: wood chips. The mixture was divided into fi ve parts and four parts were separately mixed with pig, cow, horse or poultry manures in a ratio of 2:1 (w:w) and the fi fth portion was used as the control with no manure added. All experiments were incubated for 10 months at room temperature. Compost piles were turned weekly for aeration and moisture level was maintained by adding deionised water enough to prevent the compost from getting dry. Moisture level, pH, temperature, CO2 evolution and oxygen consumption were measured monthly and the ash content of the compost at the end of experimentation. Highest temperature reached was 27.5°C in all compost heaps, pH ranged from 5.5 to 7.8 and CO2 evolution was highest in poultry manure at 18.78 μg/dwt/day. Microbial growth and activities were enhanced as indicated by increase in temperature, moisture level, pH value and respiration rate in all the compost piles. Bacteria capable of utilizing PAHs were isolated, purifi ed and characterized by molecular techniques using polymerase chain reaction with specifi c universal primers and the amplicons were sequenced. Bacteria identifi ed were Bacillus, Arthrobacter and Staphylococcus species. Percentage reduction in PAHs was measured using automated soxhlet extractor with Dichloromethane and gas chromatography/mass spectrometry. Results from PAH concentration measurements showed reduction of between 77% and 99%. Co- -composting of contaminated soil with animal manures enhanced the reduction in PAHs.
Go to article

Abstract

The adsorption of lead ions onto a zeolite bearing tuff (stilbite) from synthetic acid aqueous solution and acid mine drainage taken from Sasa mine, Macedonia, is elaborated in this paper. The results present that adsorption occurs effi ciently in both of cases. The physical and chemical properties of the used natural material, zeolite bearing tuff, are characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy. The concentration of metal ions in solution before and after treatment is obtained by AES-ICP. The effectivity of zeolite bearing tuff is determined through a series of experiments under batch conditions from single ion solutions, whereby the main parameters are the effects of initial pH of solution, mass of adsorbent, initial metal concentration in solution, contacting time and competing cations. The maximum capacity of zeolite bearing tuff for removal of lead ions from solution is determined by equilibrium studies. The experimental obtained data are fi tted with Freundlich and Langmuir adsorption models. The experimental data are better fi tted with Langmuir adsorption isotherm. Zeolite bearing tuff is effective adsorbent for treating acid mine drainage. The results showed that 99% of lead ions are removed from acid mine drainage, i.e. the concentration of lead ions from 0.329 mg/dm3 decrease to 0.002 mg/dm3 . The pH value of acid mine drainage from 3.90 after treatment with zeolite bearing tuff increases to 5.36.
Go to article

Abstract

Air quality is crucial for human health and welfare. A large number of studies have indicated strong associations between ambient air pollution levels and adverse health effects. There is a considerable number of literature reports concerning changes in atmospheric greenhouse emissions, while relatively little is known on changes in atmospheric CO emissions. This paper presents the rate of changes in atmospheric CO emissions using the logarithmic method in the assessment of this rate. Studies were conducted based on source data from 32 Organization for Economic Cooperation and Development countries. Analyses covered the period of 2005–2012. It was found that the average rate of changes had a negative average rate for most, although not all analyzed countries. In three of the 32 countries atmospheric CO emissions increased in that period. While the intensity of these changes varied, a defi nite majority of the countries reduced their CO emissions, whereas Turkey, Poland and Estonia increased their emissions.
Go to article

Abstract

The aim of the paper is to compare nitrate concentrations in samples of supply water as well as water from deep and dug wells located in the eastern region of Poland. Additionally, samples of bottled water (spring and natural mineral), certifi ed by the Institute of Mother and Child and the Children’s Memorial Health Institute, were subjected to analyses. On the basis of the obtained results, health risks related to the occurrence of methemoglobinemia in neonates and infants were evaluated. The risk analysis was performed according to the procedure recommended by the United States Environmental Protection Agency. Nitrate concentrations in the examined samples ranged from: 0.153–161.1 mg/l. The lowest concentration of nitrates was determined in the samples of bottled water, the highest being detected in the water from dug wells. It was found that nitrate concentration in samples of bottled and supply water did not pose any risk to the health of neonates and infants. The highest health risk related to methemoglobinemia occurs for neonates consuming water originating from dug wells. The risk decreases along with the age of an infant.
Go to article

Abstract

The aim of the study was to determine the impact of various methods of oil mixing with wastewater on properties of synthetic municipal wastewater containing edible oil (SMW+0.02% m/v rapeseed oil). The study was carried out in 3L glass, cylindrical reactors to which SMW+0.02% were introduced. Various methods of its mixing with water were applied: mechanical mixing (SMW+0.02%+mixing) and sonication (SMW+0.02%+ultrasounds). The wastewater was sonicated at 35 kHz for 30 min. The constant temperature conditions were maintained during the experiment for each mixing method (15°C, 20°C and 30°C). The analysis of parameters (pH, COD, BOD5 and long chain free fatty acids concentration) of raw wastewater and after 2, 4, 6, 24, 48 and 72 hours of inoculation was performed to determine the effect of mixing method. The most signifi cant changes in wastewater chemical parameters after the introduction of the oil were observed in the case of COD. For SMW+0.02%+ mixing a slow increase in COD within 24 hours of the process was observed. In the case of SMW+0.02%+ultrasounds the increase and the decrease of COD value were observed in reference to the initial value. The changes in acids concentrations observed in reactors with SMW+0.02%+ultrasounds were referred to the ones observed in reactors with SMW+0.02%+mixing but changes were more intense in the fi rst reactor. The use of ultrasounds in pre-treatment of wastewater resulted in the intense appearance of palmitic acid for 6 hours. Regardless of the emulsion formation method (mixing or ultrasounds), the concentration of oleic acid and linoleic acid was reduced. The biggest changes in free fatty acids concentration were observed for palmitic, oleic and linoleic acids after 24 hours.
Go to article

Abstract

The possibility of Cu(II), Ni(II) and Sn(II) removal from model solutions and real wastewater from the production of PCBs using Na2 CS3 for precipitation was presented in this paper. The testing was carried out on a laboratory scale using model and real industrial wastewater containing additives in the form of complexing compounds used in the production of PCBs (Na2 EDTA, NH3(aq), thiourea) and recommended by the USEPA (Na3 MGDA, Na4 GLDA). Application of Na2 CS3 in optimal conditions of conducting precipitation process was connected with obtaining wastewater containing low concentrations of metals (Cu 0.02 mg/L, Sn <0.01 mg/L, Ni <0.005 mg/L at pH 9.39 and Cu 0.07 mg/L, Sn <0.01 mg/L, Ni 0.006 mg/L at pH 7.79). Controlled application of Na2 CS3 by the use of a platinum redox electrode was also connected with obtaining treated wastewater containing low concentrations of metals (Cu 0.019 mg/L, Sn <0.05 mg/L, Ni <0.0098 mg/L at pH 9–9.5 and E= -142 mV in the laboratory scale and Cu 0.058 mg/L, Sn <0.005 mg/L, Ni 0.011 mg/L at pH 9.14 and E= +10 mV in the industrial scale). Changing the value of redox potential of treated wastewater by dosing Na2 CS3 made it possible to control the precipitation process on laboratory and industrial scale by the use of a platinum redox electrode. Controlled application of Na2 CS3 can be used to remove Cu(II), Ni(II) and Sn(II) from industrial effl uent containing chelating compounds like Na2 EDTA, NH3(aq), thiourea, Na3 MGDA and Na4 GLDA.
Go to article

Abstract

The removal of organic dyes from industrial wastewater remains a problem, both technically and economically. In this study, Yarrowia lipolytica yeast cells were isolated from poultry meat and immobilized using alginate. The immobilized Yarrowia lipolytica yeast was used as biosorbent to remove methylene blue (MB) dye from synthetic effl uent water. The results show that maximum adsorption capacity under optimum conditions was 66.67 mg∙g-1. The equilibrium adsorption data fi tted well onto the Freundlich adsorption isotherms with R2 >0.99. Adsorption kinetics was of pseudo-second order process suggesting that the adsorption was a chemisorption. FTIR spectra identifi ed typical absorption bands of a biosorbent. Sorption of MB dye on Yarrowia lipolytica yeast cells was exothermic with weak sorption interaction.
Go to article

Abstract

Diclofenac (2-[(2,6-Dichlorophenyl)amino]benzeneacetic acid) is a non-steroidal anti-infl ammatory drug. Due to excessive use of diclofenac, this drug has been detected in surface water, ground water and drinking water. In our study, four fungal strain Trametes trogii, Aspergillus niger, Yarrowia lipolytica and Phanerochaete chrysosporium were investigated in terms of diclofenac degradation potential. Trametes trogii was found to be the most effi cient strain with 100% diclofenac degradation rate. Two hydroxylated diclofenac metabolites have been identifi ed in culture medium. Crude laccase from T. trogii almost completely removed diclofenac with 97% removal in 48 h. We suggest that the degradation of diclofenac depends on the cytochrome P450 enzyme system and laccase activity. After 24 h incubation decrease in toxicity of diclofenac was confi rmed by Microtox test.
Go to article

Abstract

The content of polycyclic aromatic hydrocarbons (PAHs) in water and sediments of the Blachownia reservoir (South Poland) was investigated. Spatial variability of PAH concentrations in the longitudinal profi le of the tank was determined. PAHs in samples were determined by gas chromatography coupled with mass spectrometric detection (GC-MS QP-2010 Plus Shimadzu) using an internal standard. Concentrations ranged from 0.103 μg/L to 2.667 μg/L (Σ16 PAHs) in water samples and from 2.329 mg/kg d.w. to 9.078 mg/kg d.w. (Σ16 PAHs) in sediment samples. A pollution balance was calculated and it was estimated that the infl ow load was 17.70 kg PAHs during the year and the outfl ow load was 9.30 kg PAHs per year. Accumulation of about 50% of the annual PAH loads (8.90 kg) is a threat to the ecological condition of the ecosystem. It was calculated that the PAH loads in bottom sediment were about 80 kg, which limits their economic use. Improvement of the ecological status of this type of reservoir can be achieved by removing the sediment. Analysis of the diagnostic ratios obtained for selected PAHs showed that the potential sources of PAH emissions in small agricultural – forest catchments can be combustion of a coal, wood, plant material (low emission, forest fi res, burning grass, etc.). Transportation is also signifi cant.
Go to article

Abstract

FA discharged from the wastewater treatment plant were extracted from purifi ed effl uents for the quantitative and qualitative analysis. The treated sewage from municipal treatment plants was acidifi ed to pH <2 and extracted with ion exchange resins in a laboratory column. After desorption with NH4 OH, the fulvic acids were condensed under vacuum and tested for mass performance, UV-VIS light spectra, IR absorption spectra, elementary composition and other elements. Their structure was analysed and compared to FA present in surface waters and in sewage treated in other sewage treatment plants based on the authors’ own research and the literature data. The concentration of FA in the treated sewage was 5.2 mg/L. There is a high interdependence between the IR spectrum analysis in the visible light and the elementary composition of FA extracted from different environments, confi rming the conclusions pertaining to the structure and properties of the acids being tested. The longer sewage is subjected to a biological treatment process, the greater the degree of aromatic condensation and humus maturity of the FA contained within it. FA contained in the sewage treated in the three biological sewage treatment plants have the ratio A2 /A3 (the ratio of the absorbance of light with the wavelength of 250 and 300 nm) equal to the value 1.7. There is a high interdependence between the IR spectrum analysis in the visible light and the elementary composition of FA extracted from different environments, confi rming the conclusions pertaining to the structure and properties of the acids being tested.
Go to article

Abstract

Along with the increase in popularity of the sewage sludge thermal treatment methods in Poland resulting from the implementation of European Union law, a management problem with ash, which is produced as a result of this process, appeared. The paper analyses the chemical composition and physical properties of fl y ash from thermal treatment of municipal sewage sludge in terms of its use in concrete technologies in relation to EN 450-1 Fly ash for concrete. Defi nition, specifi cations and conformity criteria (2012) and EN 197-1 Cement. Composition, specifi cations and conformity criteria for common cements (2011) standards. The tested material did not meet the requirements related to use of fl y ash for concrete production (chemical composition, low activity index, high water demand and fi neness), and as main and minor components for cement production. On the basis of the carried out research and analyses, it was found that the hardening slurry technology creates the greatest possibilities related to the management of fl y ash from thermal treatment of municipal sewage sludge.
Go to article

This page uses 'cookies'. Learn more