Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11301
items per page: 25 50 75
Sort by:

Abstract

Self-tuning run-time reconfigurable PID controller Digital PID control algorithm is one of the most commonly used algorithms in the control systems area. This algorithm is very well known, it is simple, easily implementable in the computer control systems and most of all its operation is very predictable. Thus PID control has got well known impact on the control system behavior. However, in its simple form the controller have no reconfiguration support. In a case of the controlled system substantial changes (or the whole control environment, in the wider aspect, for example if the disturbances characteristics would change) it is not possible to make the PID controller robust enough. In this paper a new structure of digital PID controller is proposed, where the policy-based computing is used to equip the controller with the ability to adjust it's behavior according to the environmental changes. Application to the electro-oil evaporator which is a part of distillation installation is used to show the new controller structure in operation.
Go to article

Abstract

The paper focuses on the problem of robust fault detection using analytical methods and soft computing. Taking into account the model-based approach to Fault Detection and Isolation (FDI), possible applications of analytical models, and first of all observers with unknown inputs, are considered. The main objective is to show how to employ the bounded-error approach to determine the uncertainty of soft computing models (neural networks and neuro-fuzzy networks). It is shown that based on soft computing models uncertainty defined as a confidence range for the model output, adaptive thresholds can be described. The paper contains a numerical example that illustrates the effectiveness of the proposed approach for increasing the reliability of fault detection. A comprehensive simulation study regarding the DAMADICS benchmark problem is performed in the final part.
Go to article

Abstract

The paper deals with the problems of designing observers and unknown input observers for discrete-time Lipschitz non-linear systems. In particular, with the use of the Lyapunov method, three different convergence criteria of the observer are developed. Based on the achieved results, three different design procedures are proposed. Then, it is shown how to extend the proposed approach to the systems with unknown inputs. The final part of the paper presents illustrative examples that confirm the effectiveness of the proposed techniques. The paper also presents a MATLAB® function that implements one of the design procedures.
Go to article

This page uses 'cookies'. Learn more