Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The aim of the study was to evaluate the possibility of applying different methods of data mining to model the inflow of sewage into the municipal sewage treatment plant. Prediction models were elaborated using methods of support vector machines (SVM), random forests (RF), k-nearest neighbour (k-NN) and of Kernel regression (K). Data consisted of the time series of daily rainfalls, water level measurements in the clarified sewage recipient and the wastewater inflow into the Rzeszow city plant. Results indicate that the best models with one input delayed by 1 day were obtained using the k-NN method while the worst with the K method. For the models with two input variables and one explanatory one the smallest errors were obtained if model inputs were sewage inflow and rainfall data delayed by 1 day and the best fit is provided using RF method while the worst with the K method. In the case of models with three inputs and two explanatory variables, the best results were reported for the SVM and the worst for the K method. In the most of the modelling runs the smallest prediction errors are obtained using the SVM method and the biggest ones with the K method. In the case of the simplest model with one input delayed by 1 day the best results are provided using k-NN method and by the models with two inputs in two modelling runs the RF method appeared as the best.
Go to article

Abstract

In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels) was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques. The results proved that in case of sub-pixel evaluation the most accurate prediction of change may not necessarily be based on the most accurate individual assessments. When single methods are considered, based on obtained results Cubist algorithm may be advised for Landsat based mapping of imperviousness for single dates. However, Random Forest may be endorsed when the most reliable evaluation of imperviousness change is the primary goal. It gave lower accuracies for individual assessments, but better prediction of change due to more correlated errors of individual predictions. Heterogeneous model ensembles performed for individual time points assessments at least as well as the best individual models. In case of imperviousness change assessment the ensembles always outperformed single model approaches. It means that it is possible to improve the accuracy of sub-pixel imperviousness change assessment using ensembles of heterogeneous non-linear regression models.
Go to article

This page uses 'cookies'. Learn more