Search results

Filters

  • Journals

Search results

Number of results: 6
items per page: 25 50 75
Sort by:

Abstract

Paper presents the results of studies on primary crystallization and wear resistance of high chromium cast iron inoculated with ferrotitanium intended for work in abrasive conditions. Primary crystallization was examined with use of TDA method, wear tests of the samples were conducted using the modified pin-on-disk method.
Go to article

Abstract

The present work, presented the study of effect of different inoculants on impact toughness in High Chromium Cast Iron. The molds were pouring in industrial conditions and samples were tested in laboratory in Faculty of Foundry Engineering at AGH. Seven samples were tested - one reference sample, three with different addition of Fe-Ti, and three with different addition of Al. The samples were subjected to impact toughness on Charpy hammer and the hardness test. The presented investigations indicate that for the each inoculant there is an optimal addition at which the sample obtained the highest value of impact toughness. For the Fe-Ti it is 0.66% and for Al is 0.17%. Of all the examined inoculants best results were obtained at a dose of 0.66% Fe-Ti. Titanium is a well-known as a good modifier but very interesting results gives the aluminum. Comparing the results obtained for the Fe-Ti and Al can be seen that in the case of aluminum hardness is more stable. The hardness of all samples is around 40-45 HRC, which is not high for this type of cast iron. Therefore, in future studies it is planned to carry out the heat treatment procedure that may improves hardness.
Go to article

Abstract

The present investigation focuses on the study of the influence of titanium inoculation on tribological properties of High Chromium Cast Iron. Studies of tribological properties of High Chromium Cast Iron, in particularly the wear resistance are important because of the special application of this material. High Chromium Cast Iron is widely used for parts that require high wear resistance for example the slurry pumps, brick dies, several pieces of mine drilling equipment, rock machining equipment, and similar ones. Presented research described the effects of various amounts of Fe-Ti as an inoculant for wear resistance. The results of wear resistance were collated with microstructural analysis. The melts were conducted in industrial conditions. The inoculation was carried out on the stream of liquid metal. The following amount of inoculants have been used; 0.17% Fe-Ti, 0.33% Fe-Ti and 0.66% Fe-Ti. The tests were performed on the machine type MAN. The assessment of wear resistance was made on the basis of the weight loss. The experimental results indicate that inoculation improve the wear resistance. In every sample after inoculation the wear resistance was at least 20% higher than the reference sample. The best result, thus the smallest wear loss was achieved for inoculation by 0.66% Fe-Ti. There is the correlation between the changing in microstructure and wear resistance. With greater amount of titanium the microstructure is finer. More fine carbides do not crumbling so quickly from the matrix, improving the wear resistance.
Go to article

Abstract

The paper presents the capabilities of welding techniques to creating properties of wear resistant high chromium cast iron alloy. The use of the right kind of welding sequence allows you to change the structure and properties of the obtained welds. Tests were conducted for one type of additive material in the form of self shielded core wire. In order to determine the effect of the type of welding sequence on the properties of welds performed welding using string bead and weave bead. The resulting weld was tested on hardness and research structure in an optical microscope. In the following studies have been made erosive tests wear of made hardfacing. String beads gave structure rich in carbides and harder about 270 HV of the weld with weave bead. Also, wear resistance was nearly twice as better for welds made with string beads. In the experiment a decisive role in the resistance to wear plays a high hardness of the deposit and the presence of carbides in its structure. Changes in the basic parameters of the deposition process allows for the formation of structure and properties of hardfacing welds in a wide range.
Go to article

This page uses 'cookies'. Learn more