Search results

Filters

  • Journals
  • Date

Search results

Number of results: 313
items per page: 25 50 75
Sort by:

Abstract

This article investigates the solution of exponentially graded (EG) thick rectangular plates resting on two-parameter elastic foundations according to a trigonometric plate theory (TPT). This theory includes the effect of both shear and normal strains thickness without needing to any shear correction factor. The displacement fields contains initial terms of a power series across plate thickness as well as additional trigonometric terms. The material properties of plate is graded such that Lamé’s coefficients convert exponentially in a given constant orientation. Equilibrium equations according to the EG plate resting on Pasternak’s foundations are derived. The solution is obtained by using Navier’s technique. Numerical results for the EG thick plate on elastic foundations are presented, and compared with those available in the literature. The influences of Winkler’s and Pasternak’s parameters, side-to-thickness ratio, inhomogeneity parameter and aspect ratio on the bending responses of EG plates are investigated.
Go to article

Abstract

The need to reduce pollutant emissions leads the engineers to design new aeronautic combustors characterized by lean burn at relatively low temperatures. This requirement can easily cause flame instability phenomena and consequent pressure pulsations which may seriously damage combustor’s structure and/or compromise its fatigue life. Hence the need to study the combustor’s structural dynamics and the interaction between elastic, thermal and acoustic phenomena. Finite element method represent a largely used and fairly reliable tool to address these studies; on the other hand, the idealization process may bring to results quite far from the reality whereas too simplifying assumptions are made. Constraints modelling represent a key-issue for all dynamic FE analyses; a wrong simulation of the constraints may indeed compromise entire analyses although running on very accurate and mesh-refined structural models. In this paper, a probabilistic approach to characterize the influence of external constraints on the modal behaviour of an aircraft combustor-rig is presented. The finite element model validation was performed at first by comparing numerical and experimental results for the free-free condition (no constraints). Once the model was validated, the effect of constraints elasticity on natural frequencies was investigated by means of a probabilistic design simulation (PDS); referring to a specific tool developed in the ANSYS®software, a preliminary statistical analysiswas at performed via Monte-Carlo Simulation (MCS) method. The results were then correlated with the experimental ones via Response Surface Method (RSM).
Go to article

Abstract

The development of industry is determined by the use of modern materials in the production of parts and equipment. In recent years, there has been a significant increase in the use of nickel-based superalloys in the aerospace, energy and space industries. Due to their properties, these alloys belong to the group of materials hard-to-machine with conventional methods. One of the non-conventional manufacturing technologies that allow the machining of geometrically complex parts from nickel-based superalloys is electrical discharge machining. The article presents the results of experimental investigations of the impact of EDM parameters on the surfaces roughness and the material removal rate. Based on the results of empirical research, mathematical models of the EDM process were developed, which allow for the selection of the most favourable processing parameters for the expected values of the surface roughness Sa and the material removal rate.
Go to article

Abstract

The paper presents kinematic characteristics of the double 4-link coupler system, used in actual powertrain of low-floor trams (NGT6-Kr). The spatial kinematic model of the couplings was formulated assuming ideal joints and rigid members. The constraints equations of the mechanism were solved iteratively and differentiated to obtain the Jacobian matrix. The mobility and singularity analysis of the coupler mechanism was performed on the basis of the Jacobian matrix. Kinematic characteristics of the single and double coupler system were analyzed for gross angular and linear axle displacements (misalignments), taking the advantage of the fully nonlinear model. The coupling system was evaluated based on criteria describing homokinetics, balancing and clearance demands, and angular displacements in the joints. These criteria were determined for different design parameters like: coupler proportions, platform shift and angle, middle shaft length.
Go to article

Abstract

The paper presents the core design, model development and results of the neutron transport simulations of the large Pressurized Water Reactor based on the AP1000 design. The SERPENT2.1.29 Monte Carlo reactor physics computer code with ENDF/BVII and JEFF 3.1.1 nuclear data libraries was applied. The full-core 3D models were developed according to the available Design Control Documentation and the literature. Criticality simulations were performed for the core at the Beginning of Life state for Cold Shutdown, Hot Zero Power and Full Power conditions. Selected core parameters were investigated and compared with the design data: effective multiplication factors, boron concentrations, control rod worth, reactivity coefficients and radial power distributions. Acceptable agreement between design data and simulations was obtained, confirming the validity of the model and applied methodology.
Go to article

Abstract

Modern gas turbine systems operate in temperatures ranging from 1200°C to even 1500°C, which creates bigger problems related to the blade material thermal strength. In order to ensure appropriate protection of the turbine blades, a sophisticated cooling system is used. Current emphasis is placed on the application of non-stationary flow effects to improve cooling conditions, e.g., the unsteady-jet heat transfer or the heat transfer enhancement using high-amplitude oscillatory motion. The presented research follows a similar direction. A new concept is proposed of intensification of the heat transfer in the cooling channels with the use of an acoustic wave generator. The acoustic wave is generated by an appropriately shaped fixed cavity or group of cavities. The phenomenon is related to the coupling mechanism between the vortex shedding generated at the leading edge and the acoustic waves generated within the cavity area. Strong instabilities can be observed within a certain range of the free flow velocities. The presented study includes determination of the relationship between the amplitude of acoustic oscillations and the cooling conditions within the cavity. Different geometries of the acoustic generator are investigated. Calculations are also performed for variable flow conditions. The research presented in this paper is based on a numerical model prepared using the Ansys CFX-17.0 commercial CFD code.
Go to article

Abstract

The paper presents the methodology for designing the teeth conjunction of planetary gears in the planetary roller screw mechanism. A function of the planetary gears is to synchronize an operation of rollers in order to avoid axial displacements. A condition of the correct operation is no axial movement of rollers in relation to the nut. The planetary gears are integral parts of rollers and therefore an operation of the gear transmissions has a direct impact on cooperation of the screw, rollers and the nut. The proper design of gear engagements is essential for reducing slippage on surfaces of the cooperating threaded elements. For this purpose, in a designing method, both the limitations of operation and kinematic conditions of rollers’ operation have to be taken into account.
Go to article

Abstract

Bearings of three-bearing shafts are usually treated as ideally-rigid articulated supports. In literature, the reactions of supports and bending moments of multibearing shafts are calculated taking into consideration only shaft elasticity. In fact, also deformation is present in these bearings, and it changes the shaft bending line. The deformation thus influences distribution of bending moment and reaction of supports. It is the most important difference when comparing two-bearing with three-bearing shafts. Moreover, in most types of bearings, a reactive bending moment is the response of bearing to unparallel position of inner bearing rings in relation to outer rings, that is to the tilt angle. As a result, real loads of rolling elements differ from theoretical ones. The aim of the paper is to develop a method of calculating generalized loads in rolling bearings of a three-bearing shaft taking into consideration shaft deformation, deformations in bearings and reactive moments of bearings caused by tilt angle.
Go to article

Abstract

The study presents the issue of kinematic discrepancy of hydrostatic drive systems of high mobility vehicles, and its impact on the presence of the unfavourable phenomenon of circulating power. Furthermore, it presents a theoretical discussion concerning the capacity of the compensation of kinematic discrepancy by a hydrostatic drive system on the basis of tests using static characteristics.
Go to article

Abstract

A thermoelastic boundary value problem of a hollow circular disc made of functionally graded materials with arbitrary gradient is analysed. The steady-state temperature distribution is assumed to be the function of the radial coordinate with prescribed temperature at the inner and outer cylindrical boundary surfaces. The material properties are assumed to be arbitrary smooth functions of the radial coordinate. A coupled system of ordinary differential equations containing the radial displacement and stress function is derived and used to get the distribution of thermal stresses and radial displacements caused by axisymmetric mechanical and thermal loads. General analytical solutions of functionally graded disc with thermal loads are not available. The results obtained by the presented numerical method are verified by an analytical solution. The considered analytical solution is valid if the material properties, except the Poisson ratio, are expressed as power functions of the radial coordinate.
Go to article

Abstract

The paper presents an analysis of factors influencing the accuracy of reproduction of geometry of the vertebrae and the intervertebral disc of the lumbar motion segment for the purpose of designing of an intervertebral disc endoprosthesis. In order to increase the functionality of the new type of endoprostheses by a better adjustment of their structure to the patient’s anatomical features, specialist software was used allowing the processing of the projections of the diagnosed structures. Recommended minimum values of projection features were determined in order to ensure an effective processing of the scanned structures as well as other factors affecting the quality of the reproduction of 3D model geometries. Also, there were generated 3D models of the L4-L5 section. For the final development of geometric models for disc and vertebrae L4 and L5 there has been used smoothing procedure by cubic free curves with the NURBS technique. This allows accurate reproduction of the geometry for the purposes of identification of a spatial shape of the surface of the vertebrae and the vertebral disc and use of the model for designing of a new endoprosthesis, as well as conducting strength tests with the use of finite elements method.
Go to article

Abstract

Rising technical standards of customers, legal requirements and the trend to minimize maintenance effort raise the thermal, mechanical and tribological loads on components of combustion engines. In this regard, emphasis is laid on improving the piston ring - cylinder liner tribosystem, one with the highest energy losses. An efficient performance has to be guaranteed during its lifetime. Tribological investigations could be carried out on engine test benches, but they are highly cost-intensive and time-consuming. Therefore, a damage-equivalent test methodology was developed with the analogous tribological model, "ring-on-liner". The research was carried out under two characteristic operating conditions. One with a "standard" operating system, modelled in line with ideal lubrication conditions, and the other "extreme abrasive" operating system, typical to a system running on a lubricant contaminated by abrasive particles. To optimize the tribological loading capacity of the cylinder liner, with focus on these two operating conditions, numerous nitride coatings have been investigated. The key aspects being seizure resistance, running-in characteristics and long term wear behaviour.
Go to article

Abstract

By the use of different distribution methods of dynamical characteristics in the form of slowness function, mechatronic discrete systems have been synthesized. Each model consists of mechanical discrete part and a piezostack actuator connected to LxRxCx external network that has to comply with dynamical requirements in the form of poles and zeros. External network can work within different configurations. In this paper, one investigates the influence of negative parameters of stiffness in mechanical replacement models and capacitance in final mechatronic structures, after dimensionless transformations and retransformations.
Go to article

Abstract

This paper presents a methodology for contact detection between convex quadric surfaces using its implicit equations. With some small modifications in the equations, one can model superellipsoids, superhyperboloids of one or two sheets and supertoroids. This methodology is to be implemented on a multibody dynamics code, in order to simulate the interpenetration between mechanical systems, particularly, the simulation of collisions with motor vehicles and other road users, such as cars, motorcycles and pedestrians. The contact detection of two bodies is formulated as a convex nonlinear constrained optimization problem that is solved using two methods, an Interior Point method (IP) and a Sequential Quadratic Programming method (SQP), coded in MATLAB and FORTRAN environment, respectively. The objective function to be minimized is the distance between both surfaces. The design constraints are the implicit superquadrics surfaces equations and operations between its normal vectors and the distance itself. The contact points or the points that minimize the distance between the surfaces are the design variables. Computational efficiency can be improved by using Bounding Volumes in contact detection pre-steps. First one approximate the geometry using spheres, and then Oriented Bounding Boxes (OBB). Results show that the optimization technique suits for the accurate contact detection between objects modelled by implicit superquadric equations.
Go to article

Abstract

This paper presents selected applications of the miniaturized hydraulic components offered by specialized manufacturers and some results of the authors' own research on microflows, including results of hydraulic microfeeder vibration measurements performed by the touchless method using a laser vibrometer. The latter was chosen in order to eliminate measuring instrument influence on the investigated microhydraulic object. Special attention was focused on acoustic problems: noise sources and methods of noise reduction.
Go to article

This page uses 'cookies'. Learn more