Search results

Filters

  • Journals
  • Keywords

Search results

Number of results: 35
items per page: 25 50 75
Sort by:

Abstract

Over the past two years, coking coal prices have been the most volatile among major bulk commodities. On the supply side, the most important factor determining the movement of coal prices were weather problems affecting the exports of coal from Australia (Queensland), where the production of the best quality coking coals is concentrated. On the demand side, an important factor is the growing role of China on the market, which, being the world’s largest producer and consumer of metallurgical coal, has also become its largest importer. The dominant, about 75% share of China in the global spot market has resulted in their level of activity influencing the periodic price decreases or increases in international trade and prices based on CFR China (along with Australian FOB prices) have become important indicators to monitor market trends and determine levels of negotiated benchmarks. The exceptional volatility on the market led to a change in the quarterly price fixing mechanism for hard-load hard coal contractors in mid–2017 to apply a formula that assumes the valuation of their quarterly volumes based on the average of the basket of spot price indices. This reflects the broader trend of the evolving market, with growing spot market activity. The article describes the current situation on the international coking coal market and presents short-term forecasts for hard coking hard coal prices (PHCC LV), which are a reference point for fixing prices of other types of metallurgical coal (hard standard, semi-soft, PCI).
Go to article

Abstract

An analysis of the power system functioning and the behaviors of the energy market participants allows the trends taking place within years to be identified, including these associated with the evolution of the electric energy and power demand profiles. The problems of balancing the peak power demand are of both a short and long term nature, which implies the need for changes in the electricity generation sector. Apart from the existing “silo-type” generation units, the construction of distributed energy sources implemented in the civic formula in the framework of self-sufficient energy communes and energy clusters is becoming increasingly important. Support for these programs is realized both at the legislative level, as well as within dedicated competitions and ministerial activities. The financial support carried out by the National Fund for Environmental Protection and Water Management and the Regional Operational Programs is also noticeable. One of the activities aimed at spreading the idea of clustering was the competition for certified energy clusters, conducted by the Ministry of Energy. The goal of the contest was the promotion and development of the distributed energy sector, which could be used for the improvement of energy security in the local manner and constitute a basis for the knowledge necessary in planning and developing the state’s energy policy. The paper presents a synthetic analysis of the results of the competition for a certified energy cluster from the perspective of planning and operational needs related to the functioning of the power system. Further, the information about the investment plans of new generation capacities, including their breakdown with respect to type, achievable power and costs has been provided. Also, the balancing of the demand for electric energy by own generation within the energy clusters has been characterized for three time perspectives
Go to article

Abstract

The new legislative provisions, regulating the trade in solid fuels in our country, draw attention to the need to develop and improve methods and methods of managing hard coal sludge. The aim of the work was to show whether filtration parameters (mainly the permeability coefficient) of hard coal sludge are sufficient for construction of insulating layers in landfills at the stage of their closing and what is the demand for material in the case of such a procedure. The analysis was carried out for landfills for municipal waste in the Opolskie, Śląskie and Małopolskie provinces. For hard coal sludge, the permeability coefficient values are in the range of 10–8–10–11 m/s, with the average value of 3.16 × 10–9 m/s. It can be concluded that this material generally meets the criteria of tightness for horizontal and often vertical flows. When compaction, increasing load or mixing with fly ash from hard coal combustion and clays, the achieved permeability coefficient often lowers its values. Based on the analysis, it can be assumed that hard coal sludge can be used to build mineral insulating barriers. At the end of 2016, 50 municipal landfills were open in the Opolskie, Śląskie and Małopolskie Provinces. Only 36 of them have obtained the status of a regional installation, close to 1/3 of the municipal landfill are within the Major Groundwater Basin (MGB) range. The remaining storage sites will be designated for closure. Assuming the necessity to close all currently active municipal waste landfills, the demand for hard coal sludge amounts to a total of 1,779,000 m3 which, given the assumptions, gives a mass of 2,704,080 Mg. The total amount of hard coal sludge production is very high in Poland. Only two basic mining groups annually produce a total of about 1,500,000 Mg of coal sludge. The construction of insulating layers in landfills of inert, hazardous and non-hazardous and inert wastes is an interesting solution. Such an application is prospective, but it will not solve the problem related to the production and management of this waste material as a whole. It is important to look for further solutions.
Go to article

Abstract

Coal reserves in the Czech Republic are estimated to be 10 billion tons – hard coal about 37%, brown coal about 60% and lignite 3%. Hard coal is produced in Northern Moravia. In 2017 the production of hard coal was 5.5 million tons. Brown coal is mined in North-Western Bohemia − the production of brown coal in 2017 was 38.1 million tons. Significant quantities of hard coal are exported to: Slovakia, Austria, Germany and Hungary. In accordance with the National Energy Policy, coal will remain the main source of energy in the country in the future, despite the increased use of nuclear energy and natural gas. The government expects that in 2030 energy from coal will account for 30.5% of energy produced. There are five coal companies in the Czech Republic: OKD, a.s., the only hard coal producer and four brown coal mining companies: Severočeské Doly a.s., owned by ČEZ, the largest producer of brown coal, Vršanská uhelná a.s., with coal resources until 2055, Severní energetická a.s. with the largest brown coal reserves in the Czech Republic and Sokolovska uhelná a.s., the smallest mining company extracting lignite. OKD operates coal in two mines Kopalnia Důlní závod 1 – (consists of three mines: ČSA Mine, Lazy Mine, Darkov Mine) and Mine Důlní závod 2 (ttwo mines Sever, Jih). The article also presents a pro-ecological solution for the management of waste heaps after coal enrichment – a plant for the enrichment of coal waste from the Hermanice heap.
Go to article

Abstract

Wood pellets are classified as a solid biomass type. They are one of the most popular bio-heating fuels used in Europe, especially in the small heating sector, where pellets are burned in low-power domestic boilers. The pellets and automatic pellet-fired heating devices gained popularity due to the increasing air pollution (smog) problem and the low emission limiting campaigns associated with it. Wood pellets are formed as a result of small forestry particles mechanical compression (mainly conifers originated) and they are listed among renewable energy sources. The purpose of the presented studies was to compare the quality of wood pellets used for pellet-fired boilers and to identify, qualitatively and quantitatively, impurities marked in the samples obtained from the domestic market. The application of petrographic analyses, applied so far in relation to fossil fuels, is a presented work innovation for wood pellets. The microscopic analyses were performed on both certified (ENplus/DINplus) and uncertified wood pellets available on the market. Unfortunately, the analysis revealed that the quality requirements were not met, because of the unacceptable contamination presence. The unacceptable organic inclusions in the analyzed samples are fossil coals and their derivatives, coke, and polymeric materials of natural origin. Unacceptable inorganic inclusions determined in the analyzed samples were: glass, slag, rust, pieces of metal, stone powder, plastic, and polymeric materials of inorganic origin.
Go to article

Abstract

Petrographic and physico-chemical analyses of ashes are carried out on a large scale and presented in numerous scientific papers. The mentioned ashes are obtained from filters and electrostatic precipitators mounted in large industrial installations. The large-scale analysis of the ashes obtained directly from grate furnaces or blast furnaces mounted in low-power boilers started with combating smog and low-stack emissions. The collection of ash samples from household furnaces usually involves the analysis of the combustion of waste in low-power boilers. This is justified in the case of old type boilers, which were designed to use virtually any fuel. Currently, new types of boilers, designed to burn dedicated fuels, are offered on the market. The aim is to use only renewable fuels (biomass) or fossil fuels with high quality parameters, which are more environment-friendly, e.g. eco-pea coal, lignite briquettes, or peat briquettes. The authors of the study focused on examining the ash obtained from boilers for burning wood pellets by performing microscopic analysis of residues after biomass combustion. The above mentioned analysis provides a comprehensive information on the efficiency of the combustion process, the content of contaminants remaining in the ash, and the suitability of ash for other applications. The entire process, from the moment of collecting the samples to the execution of the analysis takes up to 12 hours, which ensures a quick decision on furnace adjustment or fuel change. The ash components were determined based on the results obtained by the Fly-Ash Working Group of the International Committee for Coal and Organic Petrology (ICCP). The mentioned classification has been supplemented with new key elements occurring in ashes resulting from the combustion of wood pellets in household boilers. This allowed determining the percentage content of characteristic components in the tested material, which can be used as a specific benchmark when issuing opinions on the quality and efficiency of the boiler and the combusted pellets.
Go to article

Abstract

The environment is the greatest good for the people. Everyone wants to breath air of the best possible quality, whether living in the city center of a metropolis or in a rural area. Air polluted with very fine particles contribute to the negative effect on people’s health and the whole environment. A significant part of air dust pollution comes from the so-called low emissions sources which include: non-standard furnaces, fireplaces, low-efficiency outdated boilers and local heat sources. Since the beginning of Polish Mining Group’s existence, the company actively participates and supports many activities, the aim of which is to improve the air quality by producing and supplying high quality coal for the residential sector. The company has undertaken pro-ecological activities towards creating a new, pro-ecological strategy as well as product offer. The production of an ecological coal assortment is systematically developing but new coal products are also being launched on the market. One of the company’s priorities is the production of thermal coal for the residential sector. Many organizational and technological changes have been made In that area (e.g. the establishmsnt of the Eco-Fuels Production Plant) to ensure a suitable level of production of the highest quality thermal coal.
Go to article

Abstract

Poland is now faced with the task of developing a long-term energy policy for decades to come, a strategy capable of reconciling the security of power supplies as well as effective economic processes, ensuring adequate standards of environmental protection. The process in which fossil fuels are converted into energy carriers of choice is accompanied by the emission of various gas substances which escape into the environment. Later on, those substances accumulate in the atmosphere as greenhouse gases affecting the Earth’s radiation balance – the greenhouse effect. Upsetting the balance between emission levels of those gases and the capacity to convert them in the atmosphere is the reason for climate changes. Sustainable development indices constitute a monitoring tool which makes it possible to create a statistical image of a country from the perspective of a new development paradigm. The most important feature of this index is the capability of comparing values, enabling to determine the position of a given object with reference to other objects. The article analyses 8 indexes of sustainable development in terms of using biomass for power generation purposes. The analysis was performed to include three social order indices, two economic indices and one environmental order index. It was concluded that the use of biomass in power generation can reduce the emission of greenhouse gasses significantly at several stages: the emission can be eliminated from the biological process of biomass conversion, storage and it can also be reduced during transportation.
Go to article

Abstract

The paper presents selected issues related to the development of international coal markets. World consumption of coal dropped for the second year in a row in 2016, primarily due to the lower demand from China and the US. The share of coal in global primary energy consumption decreased to 28%. World coal production accounted to 3.66 billion toe and it was lower by 6.2% when compared to the previous year. More than 60% of this decline took place in China. The decline in global production was more than four times higher than the decrease in consumption. The sufficiency of the world resources of coal are estimated at 153 years – that is three times more than the sufficiency of oil and gas resources. After several years of decline, coal prices increased by 77% in 2016. The current spot prices are at the level of $80/ton and are close to the 2014 prices. In the European market, after the first half of the year, coal prices reached the level of around 66% higher than in the same period of the last year. The average price in the first half amounted to PLN 12.6/GJ, which is close to the 2012 prices. The share of spot trade in the total purchase amount accounted to approx. 20%. Prices in futures contracts can be estimated on the basis of the Japan-Australia contracts prices and prices in supplies to power plants located in Germany. On average, the prices in supplies to these power plants were higher by approximately 9% in the years 2010 – 2016 and prices in Australia – Japan contracts were 12% higher than CIF ARA prices in 2017. Global energy coal trade reached about 1.012 billion tons in 2016. A decline by 4.8% is expected in 2019 primarily due to the expected reduction in demand in major importing countries in Asia.
Go to article

Abstract

In recent years, the Budryk Coal Mine (KWK Budryk) reached the mining depth of 1300 m, where there is about 160 million tons of coal, including 120 million tons of coking coal (type 35). The task of the Coal Processing Plant complex modernization was undertaken. The article presents the modernization of coal screening, classification and dewatering systems at the KWK Budryk Processing Plant and the implementation of screening of PROGRESS ECO sp. z o.o. SK. The modernization project defined the following technical requirements for all screens in the KWK Budryk Coal Processing Plant extension project: - Vibrating screens with a linear type drive with a drive unit placed on the drive beam of the trommel screen in the form of vibration generators; - Screen drives equipped with a starting-braking device; - The use of main screen drive bearings with a nominal service life of at least 40,000 man-hours; - All work surfaces made of materials with a strength of up to 80 mm grain and abrasion resistance; side strips and sieves fixed in a way ensuring trouble-free operation, and at the same time quick and easy replacement; - Sheets made of stainless steel; - Side walls, beams and other elements attached to them connected with screws using a system protecting against corrosion and elements separation; - The use of a work parameters monitoring and visualization system, i.e. - pitch of the riddle, - bearing operating temperatures and the condition of their wear. Three types of screens were provided: - PWP1-1Z-2,8x6,0 screeners that alternatively perform sieving or desliming processes, - PWP1-2.4x6.0 screening machines performing desliming processes, - PWP1-2.0x6.0 screens performing the classification process.
Go to article

Abstract

W artykule przybliżono charakterystykę frakcji nadsitowej wytwarzanych w regionalnych instalacjach przetwarzania odpadów komunalnych. W lipcu 2013 roku wprowadzono zmiany do ustawy o czystości i porządku w gminie, które wdrożyły w Polsce nowy model gospodarki odpadami komunalnymi oparty na mechaniczno-biologicznym ich przetwarzaniu. Podstawowym elementem tego systemu są sortownie odpadów komunalnych, które są obecnie źródłem wytwarzania frakcji nadsitowej posiadającej własności paliwowe. Dla potrzeb rozpoznania jej właściwości autorzy artykułu przeprowadzili badania własne koncentrujące się na rozpoznaniu podstawowych własności energetycznych frakcji nadsitowej w poszczególnych sezonach roku wraz z rozróżnieniem rodzajów zabudowy. Przeprowadzono badania składu morfologicznego dla potrzeb określenia koncentracji frakcji energetycznych. Przeanalizowano stabilność jakościową strumienia frakcji nadsitowej pod względem możliwości energetycznego zagospodarowania w instalacjach termicznego przekształcania odpadów. Badania składu morfologicznego wykazały podwyższoną koncentrację frakcji energetycznych (papier, tworzywa sztuczne, tekstylia) w stosunku do zmieszanych odpadów komunalnych. Jednocześnie badania własności energetycznych wskazują na podwyższoną standaryzację energetyczną tej frakcji w rozkładzie czasowym (pory roku) oraz rozkładzie przestrzennym (zróżnicowany rodzaj zabudowy). Badania wykazały, że wartość opałowa w zbadanych próbkach zawiera się w przedziale 18,1–23,5 MJ/kg, gdzie wartość średnia wynosi 21,5 MJ/kg. Udział popiołu zawiera się natomiast w przedziale 11,8–24,1%, a udział części palnych 67,6–77,5%. Dobre własności paliwowe oraz standaryzacja jakościowa strumienia wskazują na możliwość stosowania rozwojowych technologii zgazowania odpadów zgodnie z nowymi przepisami dyrektywy IED (Dyrektywa 2010). Technologia zgazowania, produkcja syngazu i jego spalanie w silnikach tłokowych małej mocy stanowią obecnie interesującą alternatywę dla klasycznych instalacji termicznego przekształcania odpadów opartych na technologii spalania wpisując się w rozwój instalacji RIPOK i potrzebę wdrażania gospodarki w obiegu zamkniętym.
Go to article

Abstract

Coal in Poland is an available conventional fuel providing energy security and independence of the country. Therefore, conventional energy generation should be based on coal with the optimal development of renewable energy sources. Such a solution secures the energy supply based on coal and the independence of political and economic turmoil of global markets. Polish coal reserves can secure the energy supply for decades. Coal will surely be important for energy security in the future despite the growing share of oil and gas in energy mix. The development of renewable power generation will be possible with the conventional energy generation offsetting volatile renewable power generation as Poland’s climate doesn’t allow for the stable and effective use of renewable energy sources. Considering the policy of the European Union with respect to emission reductions of greenhouse gasses and general trends as reflected in the Paris agreement in 2016, as a country we will be forced to increase renewable energy production in our energy mix. However, this process cannot impact the energy security of the country and stability and the uninterrupted supply of energy to consumers. Therefore seeking the compromise with the current energy mix in Poland is the best way to its gradual change with the simultaneous conservation of each of the sources of energy. It’s obvious that Poland can not be lonely energy island in Europe and in the world, which increasingly develops distributed energy and/ renewable technologies as well as energy storage ones. One can notice that without renewable generation and the reduction of coal’s share in country’s energy mix we will become the importer of electricity with raising energy dependence.
Go to article

Abstract

The purpose of the article was to characterize the international steam coal market based on the latest available data. The information goes back to the first half of 2018. The article focuses on the description of the three largest exporters and importers of steam coal. Representatives in these categories were selected using the latest global statistics on 2017. In 2017, global production of steam coal amounted to 5.68 billion tons and exceeded production in 2016 by 4%. For several years, invariably the world’s leading exporters of steam coal are: Indonesia, Australia and Russia. In total, these three countries in 2017 supplied 73% of steam coal to the international market. However, for the 46% of global steam coal imports (data for 2017), three Asian countries are responsible: China, India and Japan. For each of the six listed countries (i.e. for: three major global exporters and three major global importers), the paper presents volumes related to coal production, export or import. The directions of deliveries or major coal exporters to a given country were also included. At the end of the article, the price situation was presented, as it appeared in the first half of 2018 on the European and Asian markets.
Go to article

Abstract

The paper presents an analysis of the influence of the energy generated from renewable sources on an improvement in the energy efficiency of public utility building and households. It also presents the current state of the technologies for the production of electricity from renewable sources, as well as their share in the national power supply system. The conducted analysis concerns both micro, as well as large systems generating electricity. Systems generating power from renewable sources are gaining in popularity. With an increasing awareness in the society of the beneficial influence that renewable power generating systems have on the environment, as well as the support in form of various programs offering subsidies for the construction of new systems, power generation from renewable sources is becoming increasingly popular and common. Although the renewable energy systems are still not widely considered to be a profitable solution, systems using renewable sources of energy are positively perceived and treated as a new trend in the construction of multi or single-family residential buildings. The increasing share of the renewable energy in the national power supply system significantly reduces the demand for energy produced from conventional sources. This obviously translates into a reduced consumption of primary energy, for example, fossil fuels, and, in turn, leads to the reduced exploitation of natural resources, thus contributing to the protection of the natural environment. A reduced consumption of fossil fuels also means a significant reduction in environmental pollution during their processing into electricity or heat. Actions aiming at improving energy efficiency and reducing final energy consumption are being undertaken by many countries all over the world, and by the European Union. In 2012, the European Parliament and the Council issued Directive 2012/27/EU obliging the Member States to initiate actions aiming at a reduction in the consumption of final energy by 1.5% a year. The paper presents the current status of generation of energy from renewable sources during the last 13 years. The ways for using energy from the renewable sources to improve the energy efficiency of facilities were also discussed.
Go to article

Abstract

The issue of mercury emission and the need to take action in this direction was noticed in 2013 via the Minamata Convention. Therefore, more and more often, work and new law regulations are commencing to reduce this chemical compound from the environment. The paper presents the problem of removing mercury from waste gases due to new BREF/BAT restrictions, in which the problem of the need to look for new, more efficient solutions to remove this pollution was also indicated. Attention is paid to the problem of the occurrence of mercury in the exhaust gases in the elemental form and the need to carry out laboratory tests. A prototype installation for the sorption of elemental mercury in a pure gas stream on solid sorbents is presented. The installation was built as part of the LIDER project, financed by the National Center for Research and Development in a project entitled: “The Application of Waste Materials From the Energy Sector to Capture Mercury Gaseous Forms from Flue Gas”. The installation is used for tests in laboratory conditions in which the carrier gas of elemental mercury is argon. The first tests on the zeolite sorbent were made on the described apparatus. The tested material was synthetic zeolite X obtained as a result of a two-stage reaction of synthesis of fly ash type C with sodium hydroxide. Due to an increase, the chemical affinity of the tested material in relation to mercury, the obtained zeolite material was activated with silver ions (Ag+) by an ion exchange using silver nitrate (AgNO3). The first test was specified for a period of time of about 240 minutes. During this time, the breakthrough of the tested zeolite material was not recorded, and therefore it can be concluded that the tested material may be promising in the development of new solutions for capturing mercury in the energy sector. The results presented in this paper may be of interest to the energy sector due to the solution of several environmental aspects. The first of them is mercury sorption tests for the development of new exhaust gases treatment technologies. On the other hand, the second aspect raises the possibility of presenting a new direction for the management and utilization of combustion by-products such as fly ash.
Go to article

Abstract

Coal combustion processes are the main source of mercury emission to the environment in Poland. Mercury is emitted by both power and heating plants using hard and brown coals as well as in households. With an annual mercury emission in Poland at the level of 10 Mg, the households emit 0.6 Mg. In the paper, studies on the mercury release in the coal and biomass combustion process in household boilers were conducted. The mercury release factors were determined for that purpose. For the analyzed samples the mercury release factors ranged from 98.3 to 99.1% for hard coal and from 99.5% to 99.9% for biomass, respectively. Due to the high values of the determined factors, the amount of mercury released into the environment mainly depends on the mercury content in the combusted fuel. In light of the obtained results, the mercury content in the examined hard coals was 6 times higher than in the biomass (dry basis). Taking the calorific value of fuels into account, the difference in mercury content between coal and biomass decreased, but its content in coal was still 4 times higher. The mercury content determined in that way ranged from 0.7 to 1.7 μg/MJ for hard coal and from 0.1 to 0.5 μg/MJ for biomass, respectively. The main opportunity to decrease the mercury emissions from households is offered by the use of fuels with a mercury content that is as low as possible, as well as by a reduction of fuel consumption. The latter could be obtained by the use of modern boilers as well as by the thermo-modernization of buildings. It is also possible to partially reduce mercury emissions by using dust removal devices.
Go to article

Abstract

The article presents the directions of foundry waste management, mainly used for spent foundry sands (SFS) and dust after the reclamation of this waste. An important aspect of environmental protection in foundry production is the reduction of the amount of generated waste as a result of SFS regeneration. The advantage is the reuse of waste, which reduces the costs of raw materials purchase and environmental fees for landfilling. Non -recycled spent foundry sands can be used in other industries. SFS is most often used in road and construction industries as well as inert material in closed mines (Smoluchowska and Zgut 2005; Bany-Kowalska 2006). An interesting direction of using SFS is its application in gardening and agriculture. The article presents the advantages and disadvantages of such use. It was found that spent foundry sands can be useful for the production of soil mixtures for many agricultural and horticultural applications. Due to the possibility of environmental pollution with heavy metals and organic compounds, such an application is recommended for the so-called green sands, i.e. SFS with mineral binders. In addition, an innovative solution for the energy use of dusts after spent foundry sands reclamation with organic binders has been discussed and proposed by some researchers. It was shown that dust from reclaimed SFS with organic binders can be used as an alternative fuel and raw material in cement kilns, due to the high percentage of organic substances which determine their calorific value and silica.
Go to article

Abstract

According to International Energy Agency (IEA) energy security is the continuous supply of energy at acceptable prices. National energy is based primarily on its own energy resources such as hard coal and brown coal. The 88% of electric energy production from these minerals gives us full energy independence. Additionally, the energy production costs from these raw materials are the lowest compared to other technologies. Of these two, the energy produced from brown coal is characterized by the lowest unit technical generating cost. Poland has the resources of these minerals for decades to come, the experience related to mining and processing them, scientific and design facilities and technical facilities and factories producing machines and equipment for their own needs, as well as for export. Coal is and should remain an important source of electricity and heat supply in Poland for the next 25–50 years. It is one of the most reliable and profitable energy sources. This policy may be difficult in the next decades due to the exhaustion of the available resources of hard and brown coal. The conditions for the construction of new mines, and thus for the development of coal mining in Poland, are very interdisciplinary in legal, environmental, economic and reputational terms. Germany has similar problems. Despite the fact that it is an image of a country investing in renewable energy sources, which are pioneers of energy production from RES, in reality hard and brown coal are still the primary sources utilized to produce electric energy.
Go to article

Abstract

For a very long period of time, Polish waste management was based mainly on landfilling at landfills, which had a negative impact on the surrounding environment. The EU requirements for the Member States have led to a revolution in Polish legislation on waste management and local governments have become responsible for creating local waste management systems that will affect the achievement of EU targets. One of the solutions undertaken by several municipalities is the construction and operation of a municipal waste thermal treatment installation, which not only reduced the amount of waste deposited, but also supported the local power industry by generating electricity and heat. The emission standards for installations producing energy from waste, as in the case of conventional power plants and combined heat and power plants, are very strict, therefore, the continuous monitoring of emitted pollutants is carried out, and waste gas treatment systems are developed based on the best available techniques (BAT). The article presents emission standards applicable to waste incineration plants, including duties in the field of the environment, as well as issues related to the installation as a source of energy. In addition, the currently functioning waste incineration plants in Poland have been briefly characterized, and development plans in this area in the country have been described.
Go to article

Abstract

The coal fed to gravity enrichment consists of coals coming from different deposits and exploitation fronts. These coals differ in quality parameters, especially the amount of gangue (stone) changing over time. This results in the instability of work, especially jiggers, which have a relatively low accuracy assessed by probable scattering or imperfection rates. This deteriorates the quality of the concentrate obtained, the quality parameters of which change over time. The improvement of jiggers work would be possible by averaging the feed. This process is practically impossible due to the failure to design such a node during plant construction, which are, in most cases, directly related to the shaft. In the article, the authors propose to solve the process of averaging the feed before directing it to the enrichment process in jiggers by introducing its deshaling in vibratory- air separators of the FGX type.
Go to article

Abstract

Electric cars (SE) are currently considered to be one of the best ways to reduce CO2 and other air emissions in the transport sector as well as noise in cities. They can reduce the dependency of road transport on imported oil in a visible way. Nevertheless, the demand for electricity for a large amount of SE in road transport is not insignificant and has an impact on the power system. The article analyzes the potential impact of SE on the demand, supply, structure and costs of electricity generation as well as emissions as a result of introducing 1 million SEs by 2025 on Polish roads, and tripling this number by 2035. The competitive electricity market model ORCED was used for the calculations. The results of the analysis indicate that regardless of the charging strategy, the demand for SEs causes a slight increase in the overall electricity demand in Poland and consequently also a slight increase in power generating costs. Even a large increase in SEs in road transport will result in a rather moderate demand for additional generation capacity, assuming that power companies will have some control over the mode of charging cars. The introduction of SEs will not reduce CO2 emissions compared to conventional cars in 2025, on the contrary will increase them regardless of the loading strategy. In 2035 however, the result depends on the charging scenario and both the increase or decrease of emissions is possible. Electric vehicles will increase SO2 net emissions, but they will contribute to a decrease in the net emissions of particulates and NOx.
Go to article

Abstract

Significant quantities of coal sludge are created during the coal enrichment processes in the mechanical processing plants of hard coal mines (waste group 01). These are the smallest grain classes with a grain size below 1 mm, in which the classes below 0.035 mm constitute up to 60% of their composition and the heat of combustion is at the level of 10 MJ/kg. The high moisture of coal sludge is characteristic, which after dewatering on filter presses reaches the value of 16–28% (Wtot r) (archival paper PG SILESIA). The fine-grained nature and high moisture of the material cause great difficulties at the stage of transport, loading and unloading of the material. The paper presents the results of pelletizing (granulating) grinding of coal sludge by itself and the piling of coal sludge with additional material, which is to improve the sludge energy properties. The piling process itself is primarily intended to improve transport possibilities. Initial tests have been undertaken to show changes in parameters by preparing coal sludge mixtures (PG SILESIA) with lignite coal dusts (LEAG). The process of piling sludge and their mixtures on an AGH laboratory vibratory grinder construction was carried out. As a result of the tests, it can be concluded that all mixtures are susceptible to granulation. This process undoubtedly broadens the transport possibilities of the material. The grain composition of the obtained material after granulation is satisfactory. Up to 2 to 20 mm granules make up 90–95% of the product weight. The strength of the fresh pellets is satisfactory and comparable for all mixtures. Fresh lumps subjected to a test for discharges from a height of 700 mm can withstand from 7 to 14 discharges. The strength of the pellets after longer seasoning, from the height of 500 mm, shows different values for the analyzed samples. The values obtained for hard coal sludge and their blends with brown coal dust are at the level from 4 to 5 discharges. The strength obtained is sufficient to determine the possibility of their transport. At this stage of the work it can be stated that the addition of coal dust from lignite does not cause the deterioration of the material’s strength with respect to clean coal sludge. Therefore, there is no negative impact on the transportability of the granulated material. As a result of mixing with coal dusts, it is possible to increase their energy value (Klojzy-Karczmarczyk at al. 2018). The cost analysis of the analyzed project was not carried out.
Go to article

Abstract

The article deals with the subject of an important component of energy management, which is the performance of energy efficiency audits in companies. Using the case study analysis, the role of the energy audit was analyzed in the context of improvement of energy efficiency in selected production companies. The essence of legal requirements following from the implementation of the amended Energy Efficiency Act was presented. Specifically, problems and challenges, which refer to the method of implementation of the audit obligation in economic practice, were discussed. Furthermore, the issue of quality and usefulness (in the decision-making process) of prepared reports was raised. It was found that there were indications to claim that the obligatory energy audit of companies is not an instrument for the improvement of energy efficiency, which is always used optimally. The fault in this situation is partly attributable to the state, audit bodies and the company management. In this case, not only is the ineffective communication an issue here, but also the insufficient level of knowledge regarding energy management, as well as haste. The amendment of the Energy Efficiency Act (within just one year) imposed the necessity to conduct an energy audit on a specific group of companies. In principle, because all the entities, to which the obligation referred, had to take actions almost at the same time, numerous issues appeared. Some managers learned about the obligation to conduct the audit from companies who themselves had come out with a proposal to carry it out. This proves the lack of the proper information flow between the government administration authorities and the companies. Again, it turned out that practitioners did not keep pace with the implementation of actions, which were a consequence of numerous (and not always well thought-out) changes in the law. Haste in the fulfillment of the statutory obligation affected a high price spread of the bids sent during tenders, related to the performance of an energy audit. Bureaucratic regulations regarding tenders became another obstacle in the correct performance of the tasks. The entrepreneurs themselves, without clear guidelines on what to expect after the performed energy audit and what a report should look like, on many occasions, selected the “cheapest” bid – not always thinking too much about the qualitative consequences of such a decision. Some certifying bodies – taking advantage of an opportunity and the satisfactory combination of circumstances – offered unprofessional audit services of questionable quality. In the presented conditions, it is difficult to expect real, systemic and desirable results (economically, ecologically and socially) with regards to the energy efficiency both in the micro-, meso- and macr-economic scale. It is worth considering changes in the Energy Efficiency Act and spread the obligation to perform audits over different years according to clearly defined (in cooperation with business) criteria. If relevant actions are not taken, the situation of a temporary Eldorado on the market of energy audits will repeat in 4 years. Again, the consequence may be the poor quality and questionable usefulness of reports from energy audits of companies both at the business level and the ecological-political level. It is necessary to counteract all forms of unfair competition to interdisciplinary and specialist bodies which take actions to improve the energy efficiency of organisations. The creation of appropriate business conditions will have a positive impact on the improvement of energy efficiency. In this context, it is necessary to take actions, which enable the optimization of both the process of the implementation of obligatory legal regulations and voluntary (industry) norms and standards.
Go to article

Abstract

The paper presents an analysis of the sustainable development of electricity generation sources in the National Power System (NPS). The criteria to be met by sustainable power systems were determined. The paper delineates the power balance of centrally dispatched power generation units (CDPGU), which is required for the secure work of the NPS until 2035. 19 prospective electricity generation technologies were defined. They were divided into the following three groups: system power plants, large and medium combined heat and power (CHP) plants, as well as small power plants and CHP plants (distributed sources). The quantities to characterize the energy effectiveness and CO2 emission of the energy generation technologies analyzed were determined. The unit electricity generation costs, discounted for 2018, including the costs of CO2 emission allowance, were determined for the particular technologies. The roadmap of the sustainable development of the generation sources in the NPS between 2020 and 2035 was proposed. The results of the calculations and analyses were presented in tables and figure
Go to article

Abstract

The problem of of the use of fly ash still constitutes a research and exploration area for scientists. This is due to the fact that, 6,000,000 Mg of coal combustion by-products (CCB) are storage on landfills yearly in Poland alone. One of the potential directions of using fly ash is to use it as a substrate in hydrothermal syntheses of mesoporous materials (synthetic zeolites). Zeolites are aluminosilicates with a spatial structure. Due to their specific structure they are characterized by a number of specific properties among others molecular-sieve, ion-exchange and catalytic that can be used in engineering and environmental protection. So far, the synthesis has been carried out using coal combustion by-products such as fly ash or microsphere. The article analyzes whether separation from the fly ash of the appropriate fraction (below 63 μm) will affect the formation of zeolite grains. The syntheses were carried out using class F fly ash and the fraction separated from it, which was obtained by sieving the ash through a 63 μm sieve. Chemical (XRF) and mineralogical (XRD, SEM-EDS) analyzes were carried out for substrates as well as the obtained reaction products. In the case of substrates, the analysis did not show any significant differences between the ash and the separated fraction. However, in products after synthesis (Na-X zeolite with a small amount of Na-P1 zeolite, and small amounts of quartz and unreacted aluminosilicate glass - mullite) higher aluminum and sodium contents were observed from the separated fraction, with a lower calcium and potassium content. A small proportion of illite was observed on the diffraction curve of the zeolite from the fraction. Observations of grain morphology showed no differences in formation. Based on the conducted analyzes, it can be stated that, considering the economics of the synthesis process, the separation of fine fractions from the fly ash does not affect the quality of the synthesis process.
Go to article

This page uses 'cookies'. Learn more