Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Recently, a new class of ceramic foams with porosity levels up to 90% has been developed as a result of the association of the gelcasting process and aeration of the ceramic suspension. This paper presents and discusses original results advertising sound absorbing capabilities of such foams. The authors man- ufactured three types of alumina foams in order to investigate three porosity levels, namely: 72, 88, and 90%. The microstructure of foams was examined and typical dimensions and average sizes of cells (pores) and cell-linking windows were found for each porosity case. Then, the acoustic absorption coefficient was measured in a wide frequency range for several samples of various thickness cut out from the foams. The results were discussed and compared with the acoustic absorption of typical polyurethane foams proving that the alumina foams with high porosity of 88-90% have excellent sound absorbing properties competitive with the quality of sound absorbing PU foams of higher porosity.
Go to article

Abstract

Plastic rocks can creep, therefore the knowledge of the rheological properties of the drilled formations is an important element of the drilling process and when choosing borehole designs. These properties of plastic formations also influence the way in which appropriate drilling technology and drilling mud properties are selected. The article presents the effect of basic rheological parameters of salt from the Fore-Sudetic Monocline deposit on the drilling of boreholes in the mining area of KGHM Polska Miedź, which in the future can be used as a good drilling practice to improve the safety and efficiency of drilling. The process of drilling in plastic rocks may be hindered. Salt is a plastic rock and in the analyzed rock mass it is deposited at a considerable depth. The caprock exerts big loads on it, beside the temperature in the deposit intensifies the rheological properties of the rock. The creep process causes that the borehole contracts, therefore the knowledge about the rheological properties of the drilled rock is very important for establishing the safe time in which the well may remain uncased. The paper is devoted to the influence of basic rheological parameters of salt bed in the Fore-Sudetic Monocline on the process of drilling of a borehole in the area of KGHM Polska Miedź as these data can be used in drilling practice in the future.
Go to article

This page uses 'cookies'. Learn more