Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:

Abstract

The coal exploitation in the Upper Silesia region (along the Vistula River) triggers the strata seismic activity, characterized by very high energy, which can create mining damage of the surface objects, without any noticeable damages in the underground mining structures. It is assumed that the appearance of the high energy seismic events is the result of faults’ activation in the vicinity of the mining excavation. This paper presents the analysis of a case study of one coal mine, where during exploitation of the longwall panel no. 729, the high energy seismic events occurred in the faulty neighborhood. The authors had analyzed the cause of the presented seismic events, described the methods of energy decreasing and applied methods of prevention in the selected mining region. The analysis concluded that the cause of the high energy seismic events, during the exploitation of the longwall panel no. 729 was the rapid displacements on the fault surface. The fault’s movements arose in the overburden, about 250 m above the excavated longwall panel, and they were strictly connected to the cracking of the thick sandstone layer.
Go to article

Abstract

This paper presents a complex study of anhydrite interbeds influence on the cavern stability in the Mechelinki salt deposit. The impact of interbeds on the cavern shape and the stress concentrations were also considered. The stability analysis was based on the 3D numerical modelling. Numerical simulations were performed with use of the Finite Difference Method (FDM) and the FLAC3D v. 6.00 software. The numerical model in a cuboidal shape and the following dimensions: length 1400, width 1400, height 1400 m, comprised the part of the Mechelinki salt deposit. Three (K-6, K-8, K-9) caverns were projected inside this model. The mesh of the numerical model contained about 15 million tetrahedral elements. The occurrence of anhydrite interbeds within the rock salt beds had contributed to the reduction in a diameter and irregular shape of the analysed caverns. The results of the 3D numerical modelling had indicated that the contact area between the rock salt beds and the anhydrite interbeds is likely to the occurrence of displacements. Irregularities in a shape of the analysed caverns are prone to the stress concentration. However, the stability of the analysed caverns are not expected to be affected in the assumed operation conditions and time period (9.5 years).
Go to article

Abstract

The national power industry is based primarily on its own energy mineral resources such as hard and brown coal. Approximately 80% of electrical energy production from these minerals gives us complete energy independence and the cost of its production from coal is the lowest in comparison to other sources. Poland has, for many decades had vast resources of these minerals, the experience of their extraction and processing, the scientific-design facilities and technical factories manufacturing machines and equipment for own needs, as well as for export. Nowadays coal is and should be an important source of electrical energy and heat for the next 25–50 years, because it is one of the most reliable and price acceptable energy sources. This policy may be disturbed over the coming decades due to the depletion of active resources of hard and brown coal. The conditions for new mines development as well as for all coal mining sector development in Poland are very complicated in terms of legislation, environment, economy and image. The authors propose a set of strategic changes in the formal conditions for acquiring mining licenses. The article gives a signal to institutions responsible for national security that without proposed changes implementation in the legal and formal process it, will probably not be possible to build next brown coal, hard coal, zinc and lead ore or other minerals new mines.
Go to article

This page uses 'cookies'. Learn more