Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

In this study, cross-section analysis was performed on a novel rotating direct-metal deposition method capable of preliminary surface treatment and damage repair of cylindrical inner walls. The cross-sectional shape, microstructure, and metallurgical composition were analyzed to verify feasibility. No defects such as porosity or cracks were found in the cross section, but asymmetric dilution was observed because of the non-coaxial powder nozzle. Microstructural coarsening was confirmed over a higher dilution area by high-magnification optical microscope images. As the dilution ratio was increased, hard carbides in the dendrite were bulk-diffused into inter-dendrite spaces, and the toughness was lowered by Fe penetration into the deposit. Therefore, the increased laser heat input can be modulated to the typical dilution by decreasing the laser scanning velocity.
Go to article

Abstract

Poppet valves made from high-frequency heat-treated SUH3 steel have insufficient durability, and scratches appear on the valve face in prolonged use. It is necessary to develop surface treatment technology with excellent durability to prevent the deterioration of engine performance. Therefore, a surface treatment technology with higher abrasion resistance than existing processes was developed by direct metal deposition to the face where the cylinder and valve are closed. In this study, heat pretreatment and deposition tests were performed on three materials to find suitable powders. In the performance evaluation, the hardness, friction coefficient, and wear rate were measured. Direct metal deposition using Inconel 738 and Stellite 6 powders without heat pretreatment were experimentally verified to have excellent durability.
Go to article

This page uses 'cookies'. Learn more