Search results

Filters

  • Journals

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

A particle-level simulation technique has been developed for modelling fibre suspension flow in a converging channel of a papermachine headbox. The fibre model is represented by a chain of elements connected together. The model was verified by the simulation of rigid fibre dynamics in a simple shear flow. The period of rotation was found to be in a very good agreement with theory and reference data. The model was then employed to simulate fibre motion in a converging channel of a papermachine headbox. Fibre suspension motion was resolved using two-step procedure. Velocity field was calculated by means of a commercial CFD code ANSYS Fluent with RSM turbulence model applied and used as an input to the in-house code allowing to simulate fibre dynamics. Results of the calculations were used to construct the fibre orientation probability distribution (FOPD) which was found to be consistent with available experimental data.
Go to article

Abstract

The paper deals with the computational fluid dynamics modelling of carbon dioxide capture from flue gases in the post combustioncapture method, one of the available carbon capture and storage technologies. 30% aqueous monoethanolamine solution was used as a solvent in absorption process. The complex flow system including multiphase countercurrent streams with chemical reaction and heat transfer was considered to resolve the CO2 absorption. The simulation results have shown the realistic behaviour and good consistency with experimental data. The model was employed to analyse the influence of liquid to gas ratio on CO2 capture efficiency.
Go to article

Abstract

The paper deals with numerical modelling of carbon dioxide capture by amine solvent from flue gases in post-combustion technology. A complex flow system including a countercurrent two-phase flow in a porous region, chemical reaction and heat transfer is considered to resolve CO2 absorption. In order to approach the hydrodynamics of the process a two-fluid Eulerian model was applied. At the present stage of model development only the first part of the cycle, i.e. CO2 absorption was included. A series of parametric simulations has shown that carbon dioxide capture efficiency is mostly influenced by the ratio of liquid (aqueous amine solution) to gas (flue gases) mass fluxes. Good consistency of numerical results with experimental data acquired at a small-scale laboratory CO2 capture installation (at the Institute for Chemical Processing of Coal, Zabrze, Poland) has proved the reliability of the model.
Go to article

This page uses 'cookies'. Learn more