Search results

Filters

  • Journals
  • Date

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

The paper presents the method and results of low-frequency noise measurements of modern mid-wavelength infrared photodetectors. A type-II InAs/GaSb superlattice based detector with nBn barrier architecture is compared with a high operating temperature (HOT) heterojunction HgCdTe detector. All experiments were made in the range 1 Hz - 10 kHz at various temperatures by using a transimpedance detection system, which is examined in detail. The power spectral density of the nBn’s dark current noise includes Lorentzians with different time constants while the HgCdTe photodiode has more uniform 1/f - shaped spectra. For small bias, the low-frequency noise power spectra of both devices were found to scale linearly with bias voltage squared and were connected with the fluctuations of the leakage resistance. Leakage resistance noise defines the lower noise limit of a photodetector. Other dark current components give raise to the increase of low-frequency noise above this limit. For the same voltage biasing devices, the absolute noise power densities at 1 Hz in nBn are 1 to 2 orders of magnitude lower than in a MCT HgCdTe detector. In spite of this, low-frequency performance of the HgCdTe detector at ~ 230K is still better than that of InAs/GaSb superlattice nBn detector.
Go to article

Abstract

The paper reports on a long-wave infrared (cut-off wavelength ~ 9 μm) HgCdTe detector operating under nbiased condition and room temperature (300 K) for both short response time and high detectivity operation. The ptimal structure in terms of the response time and detectivity versus device architecture was shown. The response time of the long-wave (active layer Cd composition, xCd = 0.19) HgCdTe detector for 300 K was calculated at a level of τs ~ 1 ns for zero bias condition, while the detectivity − at a level of D* ~ 109 cmHz1/2/W assuming immersion. It was presented that parameters of the active layer and P+ barrier layer play a critical role in order to reach τs ≤ 1 ns. An extra series resistance related to the processing (RS+ in a range 5−10 Ω) increased the response time more than two times (τs ~ 2.3 ns).
Go to article

Abstract

The article presents state of work in technology of free-space optical communications (Free Space Optics − FSO). Both commercially available optical data links and their further development are described. The main elements and operation limiting factors of FSO systems have been identified. Additionally, analyses of FSO/RF hybrid systems application are included. The main aspects of LasBITer project related to such hybrid technology for security and defence applications are presented.
Go to article

Abstract

In this work we report simulation and experimental results for an MWIR HgCdTe photodetector designed by computer simulation and fabricated in a joint laboratory run by VIGO Sytems S.A. and Military University of Technology. The device is based on a modified N+pP+ heterostructure grown on 2”., epiready, semi-insulating (100) GaAs substrates in a horizontal MOCVD AIX 200 reactor. The devices were examined by measurements of spectral and time responses as a function of a bias voltage and operating temperatures. The time response was measured with an Optical Parametric Oscillator (OPO) as the source of ~25 ps pulses of infrared radiation, tuneable in a 1.55–16 μm spectral range. Two-stage Peltier cooled devices (230 K) with a 4.1 μm cut-off wavelength were characterized by 1.6 × 1012 cm Hz1/2/W peak detectivity and < 1 ns time constant for V > 500 mV.
Go to article

This page uses 'cookies'. Learn more