Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

This report describes the isolation and characterization of bacterial isolates that produce anti−microbial compounds from one of the South Shetland Islands, King George Is − land, Antarctica. Of a total 2465 bacterial isolates recovered from the soil samples, six (BG5, MTC3, WEK1, WEA1, MA2 and CG21) demonstrated inhibitory effects on the growth of one or more Gram−negative or Gram−positive indicator foodborne pathogens ( i.e. Escherichia coli 0157:H7, Salmonella spp., Klebsiella pneumoniae , Enterobacter cloacae , Vibrio parahaemolyticus and Bacillus cereus ). Upon examination of their 16S rRNA sequences and biochemical profiles, the six Antarctic bacterial isolates were identified as Gram−negative Pedobacter cryoconitis (BG5), Pseudomonas migulae (WEK1), P. corrugata (WEA1) and Pseudomonas spp. (MTC3, MA2, and CG21). While inhibitors produced by strains BG5, MTC3 and CG21 were sensitive to protease treatment, those produced by strains WEK1, WEA1, and MA2 were insensitive to catalase, lipase, a −amylase, and protease enzymes. In addtion, the six Antarctic bacterial isolates appeared to be resistant to multiple antibiotics.
Go to article

Abstract

Several bacteria that are associated with macroalgae can use phycocolloids as a carbon source. Strain INACH002, isolated from decomposing Porphyra (Rhodophyta), in King George Island, Antarctica, was screened and characterized for the ability to produce agarase and alginate-lyase enzymatic activities. Our strain INACH002 was identified as a member of the genus Flavobacterium, closely related to Flavobacterium faecale, using 16S rRNA gene analysis. The INACH002 strain was characterized as psychrotrophic due to its optimal temperature (17°C) and maximum temperature (20°C) of growth. Agarase and alginate-lyase displayed enzymatic activities within a range of 10°C to 50°C, with differences in the optimal temperature to hydrolyze agar (50°C), agarose (50°C) and alginate (30°C) during the first 30 min of activity. Strain Flavobacterium INACH002 is a promising Antarctic biotechnological resource; however, further research is required to illustrate the structural and functional bases of the enzymatic performance observed during the degradation of different substrates at different temperatures.
Go to article

This page uses 'cookies'. Learn more