Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Correct incipient identification of an analog circuit fault is conducive to the health of the analog circuit, yet very difficult. In this paper, a novel approach to analog circuit incipient fault identification is presented. Time responses are acquired by sampling outputs of the circuits under test, and then the responses are decomposed by the wavelet transform in order to generate energy features. Afterwards, lower-dimensional features are produced through the kernel entropy component analysis as samples for training and testing a one-against-one least squares support vector machine. Simulations of the incipient fault diagnosis for a Sallen-Key band-pass filter and a two-stage four-op-amp bi-quad low-pass filter demonstrate the diagnosing procedure of the proposed approach, and also reveal that the proposed approach has higher diagnosis accuracy than the referenced methods.
Go to article

Abstract

To investigate the adsorptive properties of a local laterite deposited in Chenzhou, Hunan province, China, the adsorptive properties of the natural laterite were investigated by batch technique in this study. The effects of contact time, pH, ionic strength, temperature, and the concentration on adsorption properties were also analyzed. The obtained experimental results show that the main mineral composition of laterite is kaolinite and montmorillonite. The adsorption process achieved equilibrium within 60 minutes and 90 minutes for Sr(II) and Cr(VI), respectively. The adsorption capacities for Cr(VI) and Sr(II) by the laterite were about 7.25 mg·g-1 and 8.35 mg·g-1 under the given experimental conditions, respectively. The equilibrium adsorption data were fitted to the second-order kinetic equation. The adsorption capacity for Sr(II) onto the laterite increased with increasing pH from 3–11 but decreased with increasing ionic strength from 0.001 to 1.0 M NaCl. The Sr(II) adsorption reaction on laterite was endothermic and the process of adsorption was favored at high temperature. Similarly, the adsorption capacity for Cr(VI) onto the laterite increased with increasing pH from 3–11, however, the ionic strength and temperature had an insignificant effect on Cr(VI) adsorption. The adsorption of Cr(VI) and Sr(II) was dominated by ion exchange and surface complexation in this work. Furthermore, the Langmuir and Freundlich adsorption isotherm model was used for the description of the adsorption process. The results suggest that the studied laterite samples can be effectively used for the treatment of contaminated wastewaters.
Go to article

This page uses 'cookies'. Learn more