Search results

Filters

  • Journals

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The Pleistocene and post−Pleistocene evolutionary history of many North Atlantic intertidal invertebrate species is well known, but the evolutionary history of the deep North Atlantic fauna is poorly understood, specifically whether colonization of the deep North Atlantic paralleled the patterns observed in shallow water. Contemporary pan−Atlantic species distributions could result from several colonization pathways that connected different regions of the Atlantic at different times ( e.g. Arctic, Antarctic or Panamanian path− ways). To test potential colonization pathways we quantified geographic variation in nu− clear and mitochondrial markers from Atlantic samples of Nucula atacellana, a pan−Atlantic deep−sea protobranch bivalve, using N. profundorum in the eastern central Pacific as an outgroup. We combined existing 16S data from North and South Atlantic populations of N. atacellana with new sequences of 16S, COI, and an intron of calmodulin from those populations, and newly sampled populations near Iceland. Population genetic analyses indicated a subtropical expansion via the Central American Seaway. We found no evidence for Transarctic migration to the Atlantic in N. atacellana , which suggests that colonization pathways may differ significantly between shallow− and deep−water fauna.
Go to article

Abstract

In Tanaidacea morphological identification of male individuals to the species level is complicated by two factors: the presence of multiple male stages/instars confuse the assessment of sexual stage while strong sexual dimorphism within several families obscures the morphological affinities of undescribed males to described females. Males of Paratanaoidea are often morphologically quite different from females and have not been discovered for most genera so far, which has led to the assumption that some tanaidaceans might have parthenogenetic reproduction or simply have undeveloped secondary sex traits. As a part of the IceAGE project (Icelandic marine Animals: Genetics and Ecology), with the support of molecular methods, the first evidence for the existence of highly dimorphic (swimming) males in four families of the superfamily Paratanaoidea (Agathotanaidae, Cryptocopidae, Akanthophoreidae, and Typhlotanaidae) is presented. This study suggests that these males might be the next instars after juvenile or preparatory males, which are morphologically similar to females. It has been assumed that “juvenile” males with a restricted ability for swimming ( e.g. , undeveloped pleopods) have matured testes, are capable of reproduction, and mate with females nearby, while swimming males can mate with distant females. Our explanation of the dimorphism in Tanaidomorpha lies in the fact that males of some species ( e.g. , Nototanais ) retain the same lifestyle or niche as the females, so secondary traits improve their ability to guard females and successfully mate. Males of other species that have moved into a regime (niche) different than that of the female have acquired complex morphological changes ( e.g. , Typhlotanais ).
Go to article

This page uses 'cookies'. Learn more