Search results

Filters

  • Journals

Search results

Number of results: 1
items per page: 25 50 75
Sort by:

Abstract

Inverse boundary problem for cylindrical geometry and unsteady heat conduction equation was solved in this paper. This solution was presented in a convolution form. Integration of the convolution was made assuming the distribution of temperature T on the integration interval (ti, ti+ Δt) in the form T (x, t) = T (x, ti) Θ + T (z, ti+ Δt) (1 - Θ), where Θ ϵ (0,1). The influence of value of the parameter Θ on the sensitivity of the solution to the inverse problem was analysed. The sensitivity of the solution was examined using the SVD decomposition of the matrix A of the inverse problem and by analysing its singular values. An influence of the thermocouple installation error and stochastic error of temperature measurement as well as the parameter Θ on the error of temperature distribution on the edge of the cylinder was examined.
Go to article

This page uses 'cookies'. Learn more