Search results

Filters

  • Journals
  • Date

Search results

Number of results: 7
items per page: 25 50 75
Sort by:

Abstract

The aim of this work was to investigate the heat and mass transfer during thermal decomposition of a single solid fuel particle. The problem regards the pyrolysis process which occurs in the absence of oxygen in the first stage of fuel oxidation. Moreover, the mass transfer during heating of the solid fuels is the basic phenomenon in the pyrolysis-derived alternative fuels (gas, liquid and solid phase) and in the gasification process which is focused on the generation of syngas (gas phase) and char (solid phase). Numerical simulations concern pyrolysis process of a single solid particle which occurs as a consequence of the particle temperature increase. The research was aimed at an analysis of the influence of particle physical properties on the devolatilization process. In the mathematical modeling the fuel grain is treated as an ideal sphere which consists of porous material (solid and gaseous phase), so as to simplify the final form of the partial differential equations. Assumption that the physical properties change only in the radial direction, reduces the partial derivatives of the angular coordinates. This leads to obtaining the equations which are only the functions of the radial coordinate. The model consists of the mass, momentum and energy equations for porous spherical solid particle heated by the stream of hot gas. The mass source term was determined in the wide range of the temperature according to the experimental data. The devolatilization rate was defined by the Arrhenius formula. The results of numerical simulation show that the heating and devolatilization time strongly depend on the physical properties of fuel. Moreover, proposed model allows to determine the pyrolysis process direction, which is limited by the equilibrium state.
Go to article

Abstract

This study examines the pyrolysis of a single cylindrical wood particle using particle image velocimetry (PIV). The pyrolysis was conducted inside a pyrolysis reactor designed for this purpose. The experimental setup presented in this paper is capable of effectively characterizing the intensity of pyrolysis based on velocity distribution in the vicinity of wood particles. The results of the gas velocity distribution show that evaporation of moisture has as a major impact on the formation of the gas cushion as devolatilization.
Go to article

Abstract

The aim of this study was to compare and analyze the gasification process of beech wood. The experimental investigation was conducted inside a gasifier, which can be operated in downdraft and updraft gasification system. The most important operating parameter studied in this paper was the influence of the amount of supply air on the temperature distribution, biomass consumption and syngas calorific value. The results show that the amount of air significantly influences the temperature in the combustion zone for the downdraft gasification process, where temperature differences reached more than 150 ◦C.The increased amount of air supplied to the gasifier caused an increase in fuel consumption for both experimental setups. Experimental results regarding equivalence ratio show that for value below 0.2, the updraft gasification is characterized by a higher calorific value of producer gas, while for about 0.22 a similar calorific value (6.5 MJ/Nm3) for both gasification configurations was obtained. Above this value, an increase in equivalence ratio causes a decrease in the calorific value of gas for downdraft and updraft gasifiers.
Go to article

Abstract

A one-dimensional transient mathematical model describing thermal and flow phenomena during coal coking in an oven chamber was studied in the paper. It also accounts for heat conduction in the ceramic oven wall when assuming a constant temperature at the heating channel side. The model was solved numerically using partly implicit methods for gas flow and heat transfer problems. The histories of temperature, gas evolution and internal pressure were presented and analysed. The theoretical predictions of temperature change in the centre plane of the coke oven were compared with industrialscale measurements. Both, the experimental data and obtained numerical results show that moisture content determines the coking process dynamics, lagging the temperature increase above the water steam evaporation temperature and in consequence the total coking time. The phenomenon of internal pressure generation in the context of overlapping effects of simultaneously occurring coal transitions - devolatilisation and coal permeability decrease under plastic stage - was also discussed.
Go to article

Abstract

The results of pyrolysis of pine chips and refuse derived fuel fractions are presented. The experiments were carried out in a pilot pyrolysis reactor. The feedstock was analyzed by an elemental analyzer and the X-ray fluorescence spectrometer to determine the elemental composition. To find out optimum conditions for pyrolysis and mass loss as a function of temperature the thermogravimetric analysis was applied. Gases from the thermogravimetric analysis were directed to the infrared spectrometer using gas-flow cuvette to online analysis of gas composition. Chemical composition of the produced gas was measured using gas chromatography with a thermal conductivity detector and a flame ionization detector. The product analysis also took into account the mass balance of individual products.
Go to article

Abstract

In the present paper, the one-dimensional model for heat and mass transfer in fixed coal bed was proposed to describe the thermal and flow characteristics in a coke oven chamber. For the purpose of the studied problem, the analysis was limited to the calculations of temperature field and pyrolytic gas yield. In order to verify the model, its theoretical predictions for temperature distribution during wet coal charge carbonization were compared with the measurement results found in the literature. In general, the investigation shows good qualitative agreement between numerical and experimental data. However, some discrepancy regarding the temperature characteristics at the stage of evaporation was observed.
Go to article

This page uses 'cookies'. Learn more