Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

This paper presents a robust model free controller (RMFC) for a class of uncertain continuous-time single-input single-output (SISO) minimum-phase nonaffine-in-control systems. Firstly, the existence of an unknown dynamic inversion controller that can achieve control objectives is demonstrated. Afterwards, a fast approximator is designed to estimate as best as possible this dynamic inversion controller. The proposed robust model free controller is an equivalent realization of the designed fast approximator. The perturbation theory and Tikhonov’s theorem are used to analyze the stability of the overall closed-loop system. The performance of the developped controller are verified experimentally in the position control of a pneumatic actuator system.
Go to article

Abstract

Abstract The paper presents design and experimental validation of a stable self-tuning PID controller for three degrees of freedom (3-DOF) helicopter. At first, it is proposed a self-tuned proportional-integral-derivative (PID) controller for a class of uncertain second order multiinput multi-output nonlinear dynamic systems to which the 3-DOF helicopter dynamic model belongs. Within this scheme, the PID controller is employed to approximate unknown ideal controller that can achieve control objectives. PID controller gains are the adjustable parameters and they are updated online with a stable adaptation mechanism designed to minimize the error between the unknown ideal controller and the used by PID controller. The stability analysis of the closed-loop system is performed using Lyapunov approach. It is proven that all signals in the closed-loop system are uniformly ultimately bounded. The proposed approach can be regarded as a simple and effective model-free control since the mathematical model of the system is assumed unknown. Experimental results are presented to verify the effectiveness of the proposed controller.
Go to article

Abstract

Abstract Fault input channels represent a major challenge for observer design for fault estimation. Most works in this field assume that faults enter in such a way that the transfer functions between these faults and a number of measured outputs are strictly positive real (SPR), that is, the observer matching condition is satisfied. This paper presents a systematic approach to adaptive observer design for joint estimation of the state and faults when the SPR requirement is not verified. The proposed method deals with a class of Lipschitz nonlinear systems subjected to piecewise constant multiplicative faults. The novelty of the proposed approach is that it uses a rank condition similar to the observer matching condition to construct the adaptation law used to obtain fault estimates. The problem of finding the adaptive observer matrices is formulated as a Linear Matrix Inequality (LMI) optimization problem. The proposed scheme is tested on the nonlinear model of a single link flexible joint robot system.
Go to article

This page uses 'cookies'. Learn more