Search results

Filters

  • Journals

Search results

Number of results: 9
items per page: 25 50 75
Sort by:

Abstract

A steam generator in a nuclear power plant with a light water reactor is a heat exchanger, in which the heat is being transferred from the primary to the secondary loop (it links the primary and secondary loops). When the power plant is running, the inlet parameters (temperatures and mass flow rates) on both sides of the steam generator can change. It is important to know how the changes of these parameters affect the steam generator performance. The complexity of the processes taking place in the steam generator makes it difficult to create a simulator reflecting its performance under changed conditions. In order to simplify the task, the steam generator was considered as a ‘black box’ with the aim of examining how the changes of the inlet parameters affect the changes of the outlet ones. On the basis of the system (steam generator) response, a simple mathematical model of the steam generator under variable load conditions was proposed. In the proposed model, there are two dimensionless parameters and three constant coefficients. A linear relation between these dimensionless parameters was obtained. The correctness of the model was verified against the data obtained with a steam generator simulator for European Pressured Reactor and AP-600 reactors. A good agreement between the proposed model and the simulator data was achieved.
Go to article

Abstract

The aim of the study was to examine the efficiency of the thermal wave type adsorption refrigerating equipment working on a pair of activated carbon and methanol. Adsorption units can work in trigeneration systems and in applications driven by waste heat. They can be built also as a part of hybrid sorption-compressor systems, and they are very popular in solar refrigeration systems and energy storage units. The device examined in this study operates in a special mode called thermal wave. This mode allows to achieve higher efficiency rates than the normal mode of operation, as a significant contributor to transport heat from one to the other adsorber. To carry out the experiment a test bench was built, consisting of two cylindrical adsorbers filled with activated carbon, condenser, evaporator, oil heater and two oil coolers. Thermal oil circulation was responsible for providing and receiving heat from adsorbers. In order to perform the correct action a special control algorithm device was developed and implemented to keep the temperature in the evaporator at a preset level. The experimental results show the operating parameters changes in both adsorbers. Obtained COP (coefficient of performance) for the cycle was 0.13.
Go to article

Abstract

The internal diameter of a tube in a ‘church window’ condenser was estimated using an entropy generation minimization approach. The adopted model took into account the entropy generation due to heat transfer and flow resistance from the cooling-water side. Calculations were performed considering two equations for the flow resistance coefficient for four different roughness values of a condenser tube. Following the analysis, the internal diameter of the tube was obtained in the range of 17.5 mm to 20 mm (the current internal diameter of the condenser tube is 22 mm). The calculated diameter depends on and is positively related to the roughness assumed in the model.
Go to article

Abstract

Development of electronics, which aims to improve the functionality of electronic devices, aims at increasing the packing of transistors in a chip and boosting clock speed (the number of elementary operations per second). While pursuing this objective, one encounters the growing problem of thermal nature. Each switching of the logic state at the elementary level of an integrated circuit is associated with the generation of heat. Due to a large number of transistors and high clock speeds, higher heat flux is emitted by the microprocessor to a level where the component needs to be intensively cooled, or otherwise it will become overheated. This paper presents the cooling of microelectronic components using microjets.
Go to article

Abstract

Adsorption refrigeration systems are able to work with heat sources of temperature starting with 50°C. The aim of the article is to determine whether in terms of technical and economic issues adsorption refrigeration equipment can work as elements that produce cold using hot water from the district heating network. For this purpose, examined was the work of the adsorption air conditioning equipment cooperating with drycooler, and the opportunities offered by the district heating network in Warsaw during the summer. It turns out that the efficiency of the adsorption device from the economic perspective is not sufficient for production of cold even during the transitional period. The main problem is not the low temperature of the water supply, but the large difference between the coefficients of performance, COPs, of adsorption device and a traditional compressor air conditioning unit. When outside air temperature is 25°C, the COP of the compressor type reaches a value of 4.49, whereas that of the adsorption device in the same conditions is 0.14. The ratio of the COPs is 32. At the same time ratio between the price of 1 kWh of electric power and 1 kWh of heat is only 2.85. Adsorption refrigeration equipment to be able to compete with compressor devices, should feature COPads efficiency to be greater than 1.52. At such a low driving temperature and even changing the drycooler into the evaporative cooler it is not currently possible to achieve.
Go to article

This page uses 'cookies'. Learn more