Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 9
items per page: 25 50 75
Sort by:

Abstract

In this study, medium-carbon steel was subjected to warm deformation experiments on a Gleeble 3500 thermosimulator machine at temperatures of 550°C and 650°C and strain rates of 0.001 s–1 to 1 s–1. The warm deformation behavior of martensite and the effects of strain rate on the microstructure of ultrafine grained medium-carbon steel were investigated. The precipitation behavior of Fe3C during deformation was analyzed and the results showed that recrystallization occurred at a low strain rate. The average ultrafine ferrite grains of 500 ± 58 nm were fabricated at 550°C and a strain rate of 0.001 s–1. In addition, the size of Fe3C particles in the ferrite grains did not show any apparent change, while that of the Fe3C particles at the grain boundaries was mainly affected by the deformation temperature. The size of Fe3C particles increased with the increasing deformation temperature, while the strain rate had no significant effect on Fe3C particles. Moreover, the grain size of recrystallized ferrite decreased with an increase in the strain rate. The effects of the strain rate on the grain size of recrystallized ferrite depended on the deformation temperature and the strain rate had a prominent effect on the grain size at 550°C deformation temperature. Finally, the deformation resistance apparently decreased at 550°C and strain rate of 1 s–1 due to the maximum adiabatic heating in the material.
Go to article

Abstract

In order to compare the pathogenicity of different Tembusu virus (TMUV) strains from geese, ducks and chickens, 56 5-day-old Cherry Valley ducklings which were divided into 7 groups and infected intramuscularly with 7´105 PFU/ml per duck of six challenge virus stocks. The clinical signs, weight gain, mortality, macroscopic and microscopic lesions, virus loads in sera of 1, 3, 5, 7, 11 and 14 dpi and serum antibody titers were examined. The results showed that these viruses could make the young ducks sick, but the clinical signs differed with the different species-original strains. All the experimental groups lose markedly in weight gain compared to the control, but there were no obvious distinctions in weight gains, as well as macroscopic and microscopic lesions of dead ducks between the infected groups. However, the groups of waterfowl-derived strains (from geese and ducks) showed more serious clinical signs and higher relative expressions of virus loads in sera than those from chicken-derived. The mortality of waterfowl groups was 37.5%, and the greatest mortality of chicken groups was 12.5%. The serum antibodies of the geese-species group JS804 appeared earlier and were higher in the titers than others. Taken toghter, the pathogenicity of waterfowl-derived TMUV was more serious than chicken-derived TMUV and JS804 could be chosen as one TMUV vaccine strain to protect from the infection.
Go to article

Abstract

Geomechnical model testing has been widely applied as a kind of research technique in underground engineering problems. However, during the practical application process, due to the influence of many factors, the desired results cannot be obtained. In order to solve this problem, based on the measurement requirements of the model test, combined with FBG(Fiber Bragg Grating) sensor technology and traditional measurement methods, an FBG monitoring system, Micro-multi-point displacement test system, resistance strain test system and surrounding rock pressure monitoring system are developed. Applying the systems to a model test of the tunnel construction process, the displacement in advance laws of tunnel face, radial displacement distribution laws and surrounding rock pressure laws are obtained. Test results show that a multivariate information monitoring system has the advantage of high precision, stability and strong anti-jamming capability. It lays a solid foundation for the real-time data monitoring of the tunnel construction process model test.
Go to article

Abstract

The friction and wear properties of 201HT aluminum alloys and the corresponding competitive coupons were tested on an electrohydraulic servo face friction and wear testing machine (MM-U10G). The microstructures of the competitive coupons were investigated by scanning electron microscopy (SEM) and consequently the corresponding friction and wear mechanisms were studied. The results demonstrated that: (1) the best competitive material of friction and wear performance of the 201HT was the 201HTC. (2) the 201HTC modified by carbon following the initial mill for oil storage of the micro-groove to be produced, increased the corresponding lubrication performance reduced the friction coefficient and wear rate effectively. (3) the 201HT-201HTC could obtain both better friction and wear mainly due to the initial process of grinding following the 201HT plastic deformation occurred in the surface and the formation of a series of re-melting welding points, whereas the 201HT material hardness would be similar to the 201HTC material hardness, which led into the competitive material friction and wear performance improvement.
Go to article

This page uses 'cookies'. Learn more