Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The grain boundary wetting phase transition in an industrial EZ33A cast alloy is studied. 12% of the grain boundaries are completely wetted at the temperature slightly higher than the eutectic transformation temperature (530°C). The fraction of wetted grain boundaries increases with temperature, reaches a maximum of 85% at 570°C, and does not change further until the alloy melts. In the as-cast state, the alloy has low ductile properties at the ambient temperature. The microstructure in the as-cast state corresponds to the wetting state at about 560°C, which indicates that the cooling rate in casting is almost equal to that in quenching. The volume and the surface fraction of the second phase and the hardness measured at the least wetted state of samples point to its good machinability. The wetting data are used to suggest a sequence of heat treatment and machining for processing EZ33A alloy parts.
Go to article

Abstract

The high-pressure torsion (HPT) of Ti-Fe alloys with different iron content has been studied at 7 GPa, 5 anvil rotations and rotation speed of 1 rpm. The alloys have been annealed before HPT in such a way that they contained different amounts of α/α' and β phases. In turn, the β phase contained different concentration of iron. The 5 anvil rotations correspond to the HPT steady-state and to the dynamic equilibrium between formation and annihilation of microstructure defects. HPT leads to the transformation of initial α/α' and β-phases into mixture of α and high-pressure ω-phase. The α → ω and β → ω phase transformations are martensitic, and certain orientation relationships exist between α and ω as well as β and ω phases. However, the composition of ω-phase is the same in all samples after HPT and does not depend on the composition of β-phase (which is different in different initial samples). Therefore, the martensitic (diffusionless) transformations are combined with a certain HPT-driven mass-transfer. We observed also that the structure and properties of phases (namely, α-Ti and ω-Ti) in the Ti – 2.2 wt. % Fe and Ti – 4 wt. % Fe alloys after HPT are equifinal and do not depend on the structure and properties of initial α'-Ti and β-Ti before HPT.
Go to article

This page uses 'cookies'. Learn more