Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 74
items per page: 25 50 75
Sort by:

Abstract

The aim of this paper was to test currently available on the market products for sealing anodic oxide coatings as well as to test the use of other alternative substances improving the sealing process. The ability to seal in 10 different solutions and the quality of the seal has been tested. The influence of the applied preparations on corrosion resistance and resistance to strongly alkaline environment was also investigated. Based on the results obtained, satisfactory results were archived for the sample sealed in a IMN-OML (Institute of Non-Ferrous Metals in Gliwice, Light Metals Division) solution sealant and in solution of nickel acetate in a medium-temperature process. Sealing by means of nickel acetate solutions is economically justified, and its use allows the process temperature to be lowered. When it comes to resistance to alkalis, samples sealed in IMN-OML sealant are the best. Commercial solutions have also achieved positive results in all tests.
Go to article

Abstract

The paper presents the results of the electrodeposition of nickel composite coatings reinforced with the ceramic SiC particles. A Watts type galvanic bath modified with various organic additives was used. These additives were: 2-sulfobenzoic acid imide (LSA), dioctyl sulfosuccinate sodium salt (DSS), sodium dodecyl sulfate (SDS), tris (hydroxymethyl) aminomethane (THAM) and hexamethyldisilizane (HMDS). The nickel composite coating was electrodeposited on a 2xxx aluminum alloy series substrate (EN-AW 2017) with zinc interlayer. Studies concerned the effect of the applied organic additives on properties of composite coatings such as: microstructure, microhardness, adhesion to the substrate, corrosion resistance and roughness. The structure of the coatings was assessed by scanning electron microscopy and light microscopy. Based on the studies of zeta potential it was found that the bath modification had a significant impact on the amount of the ceramic phase embedded in metal matrix. The tests conducted in a model 0.01 M KCl solution were not fully representative of the true behavior of particles in a Watts bath.
Go to article

Abstract

This article presents the research results on impact of the method of polycrystalline graphene layers separation from the growth substrate on the obtained carbon material quality. The studies were carried out on graphene sheets obtained by metallurgical method on a liquid metal substrate (HSMG® graphene). The graphene was separated using chemical etching method or the electrochemical delamination method, by separating by means of electrolysis. During electrolysis, hydrogen is emitted on a graphene-covered of cathode (metal growth substrate) as a result of the voltage applied. The graphene layer breaks away from metallic substrate by gas accumulation between them. The results from these separation processes were evaluated by means of different tools, such as SEM, TEM and AFM microscopy as well as Raman Spectroscopy. In summary, the majority of analyses indicate that the graphene obtained as a result of hydrogen delamination possesses higher purity, smaller size and number of defects, its surface is smooth and less developed after the transfer process to the target substrate.
Go to article

Abstract

The purpose of this paper is to present and analyse the decision-making problem faced by a future house owner - selection of the optimal solution of building thermal insulation in relation to the selected criteria, both related to costs and future benefits. The problem of selecting the best solutions in the construction sector is widely discussed in the science literature. In this paper, the authors decided to solve the raised problem by using the Entropy method.
Go to article

Abstract

The subject of the work is the analysis of thermomechanical bending process of a thin-walled tube made of X5CrNi18-10 stainless steel. The deformation is produced at elevated temperature generated with a laser beam in a specially designed experimental setup. The tube bending process consists of local heating of the tube by a moving laser beam and simultaneous kinematic enforcement of deformation with an actuator and a rotating bending arm. During experimental investigations, the resultant force of the actuator and temperature at the laser spot are recorded. In addition to experimental tests, the bending process of the tube was modelled using the finite element method in the ABAQUS program. For this purpose, the tube deformation process was divided into two sequentially coupled numerical simulations. The first one was the heat transfer analysis for a laser beam moving longitudinally over the tube surface. The second simulation described the process of mechanical bending with the time-varying temperature field obtained in the first simulation. The force and temperature recorded during experiments were used to verify the proposed numerical model. The final stress state and the deformation of the tube after the bending process were analyzed using the numerical solution. The results indicate that the proposed bending method can be successfully used in forming of the thin-walled profiles, in particular, when large bending angles and a small spring-back effect are of interest.
Go to article

Abstract

The aim of the study was to assess the physiological stiffness of the normal canine jejunal mucosa based on shear wave elastography. The study was carried out on 60 dogs. In all the animals studied, the abdominal ultrasound was carried out using the SuperSonic Imagine Aixplorer system. The site of the jejunal elastography was determined using standard ultrasonography and all the measurements were carried out thrice. The stiffness of the area examined was determined during each measurement. Mean values were calculated based on the results obtained. The normal stiffness of the jejunal mucosa ranged from 1.305 kPa to 9.319 kPa (mean 5.31 ± 2.04 kPa). Based on our findings, we determined the range of normal values of the jejunal mucosal stiffness in healthy dogs. In addition, shear wave elastography was found to be safe and easy to perform. Moreover, it did not require anaesthesia or patient immobilisation for long periods.
Go to article

Abstract

In this article the structural and mechanical properties of grain refinement of Cu-Sn alloys with tin content of 10%, 15% and 20% using the KOBO method have been presented. The direct extrusion by KOBO (name from the combination of the first two letters of the names of its inventors – A. Korbel and W. Bochniak) method employs, during the course of the whole process, a phenomenon of permanent change of strain travel, realized by a periodical, two-sided, plastic metal torsion. Moreover the aim of this work was to study corrosion resistance. The microstructure investigations were performed using an optical microscope Olimpus GX71, a scanning electron microscope (SEM) and a scanning transmission electron microscope (STEM). The mechanical properties were determined with INSTRON 4505/5500 machine. Corrosion tests were performed using «Autolab» set – potentiostat/galvanostat from EcoChemie B.V. with GPES software ver. 4.9. The obtained results showed possibility of KOBO deformation of Cu-Sn casting alloys. KOBO processing contributed to the refinement of grains and improved mechanical properties of the alloys. The addition of tin significantly improved the hardness. Meanwhile, with the increase of tin content the tensile strength and yield strength of alloys decrease gradually. Ductility is controlled by eutectoid composition and especially δ phase, because they initiate nucleation of void at the particle/matrix interface. No significant differences in the corrosion resistance between cast and KOBO processed materials were found.
Go to article

Abstract

Studies were carried out to determine the effect of heat treatment parameters on the plastic properties of unalloyed ausferritic ductile iron, such as the elongation and toughness at ambient temperature and at – 60 °C. The effect of austenitizing temperature (850, 900 and 950°C) and ausferritizing time (5 - 180 min.) at a temperature of 360°C was also discussed. The next step covered investigations of a relationship that is believed to exist between the temperature (270, 300, 330, 360 and 390 °C) and time (5, 10, 30, 60, 90, 120, 150, 180, 240 min.) of the austempering treatment and the mechanical properties of unalloyed ausferritic ductile iron, when the austenitizing temperature is 950°C. The “process window” was calculated for the ADI characterized by high toughness corresponding to the EN-GJS800-10-RT and EN-GJS-900-8 grades according to EN-PN 1564 and to other high-strength grades included in this standard. Low-alloyed cast iron with the nodular graphite is an excellent starting material for the technological design of all the ausferritic ductile iron grades included in the PN-EN-1624 standard. The examined cast iron is characterized by high mechanical properties stable within the entire range of heat treatment parameters.
Go to article

Abstract

The subject of the study are alumina foams produced by gelcasting method. The results of micro-computed tomography of the foam samples are used to create the numerical model reconstructing the real structure of the foam skeleton as well as the simplified periodic open-cell structure models. The aim of the paper is to present a new idea of the energy-based assessment of failure strength under uniaxial compression of real alumina foams of various porosity with use of the periodic structure model of the same porosity. Considering two kinds of cellular structures: the periodic one, for instance of fcc type, and the random structure of real alumina foam it is possible to justify the hypothesis, computationally and experimentally, that the same elastic energy density cumulated in the both structures of the same porosity allows to determine the close values of fracture strength under compression. Application of finite element computations for the analysis of deformation and failure processes in real ceramic foams is time consuming. Therefore, the use of simplified periodic cell structure models for the assessment of elastic moduli and failure strength appears very attractive from the point of view of practical applications.
Go to article

Abstract

The results of studies on the use of magnesium alloy in modern Tundish for production of vermicular graphite cast irons were described. This paper describes the results of using a low-magnesium ferrosilicon alloy for the production of vermicular graphite cast irons. The paper presents a vermicular (and nodular) graphite in different walled castings. The results of trials have shown that the magnesium Tundish process can produce high quality vermicular graphite irons under the specific industrial conditions of Foundries - Odlewnie Polskie S.A. in Starachowice. In this work describes too preliminary studies on the oxygen state in cast iron and their effect on graphite crystallization.
Go to article

This page uses 'cookies'. Learn more