Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:

Abstract

Linear arrays of ultrasonic transducers are commonly used as ultrasonic probes in medical diagnostics for imaging the interior of a human body in vivo. The crosstalk phenomenon occurs during the operation of transducers in which electrical voltages and mechanical vibrations are transmitted to adjacent components. As a result of such additional excitation of the transducers in the array, the directivity characteristics of the aperture used changes, and consequently there is interference with properoperation of a given array and the emergence of distortions in the obtained ultra sound image that reduce its quality. This paper studies the manner of propagation of mechanical crosstalk in the designed model of a linear array of ultrasonic transducers on the basis of unwanted signals, which appeared on elementary piezo-electric transducers when power is supplied to the selected transducer in the array. The universal model of linear array of ultrasonic transducers, which has been developed, allowed the simulation of mechanical crosstalk, taking in to account the cross-coupling phenomenon in all of its structure with the use of finite elements method (FEM) implemented in COMSOL Multiphysics software. The analysis of crosstalk signals showed that they consist of aggregated pulses propagating with different speeds and frequencies. This signifies the formation of different vibration modes transmitted simultaneously via different paths. The paper is an original approach which enables to identify different vibration modes and estimate their participation in the crosstalk signal and their ways of propagation. Conclusions from the research allow predicting specific design changes which are significant due to the minimization of mechanical crosstalk in linear arrays of ultrasonic transducers.
Go to article

Abstract

This paper presents and analyses the results of a simulation of the acoustic field distribution in sectors of a 1024-element ring array, intended for the diagnosis of female breast tissue with the use of ultrasonic tomography. The array was tested for the possibility to equip an ultrasonic tomograph with an additional modality - conventional ultrasonic imaging with the use of individual fragments (sections) of the ring array. To determine the acoustic field for sectors of the ring array with a varying number of activated ultrasonic transducers, a combined sum of all acoustic fields created by each elementary transducer was calculated. By the use of MATLAB software, a unique algorithm was developed, for a numerical determination of the distribution of pressure of an ultrasonic wave on any surface or area of the medium generated by the concave curvilinear structure of rectangular ultrasound transducers with a geometric focus of the beam. The analysis of the obtained results of the acoustic field distribution inside the ultrasonic ring array used in tomography allows to conclude that the optimal number of transducers in a sector enabling to obtain ultrasound images using linear echographic scanning is 32 ≤ n ≤ 128, taking into account that due to an increased temporal resolution of ultrasonic imaging, this number should be as low as possible.
Go to article

Abstract

Ultrasonic projection imaging is similar to X-ray radiography. Nowadays, ultrasonic projection methods have been developed in the set-up of multi-element flat arrays with miniature transducers, where one of the array acts as a transmitter and the other one is a receiver. In the paper, a new method of the projection imaging using a 1024-element circular ultrasonic transducer array is presented. It allows the choice of a projection scanning plane for any angle around a studied object submerged in water. Fast acquisition of measurement data is achieved as a result of parallel switching of opposite transmitting and receiving transducers in the circular array and vertical movement of the array. The algorithm equalizing the length of measurement rays and the distances between them was elaborated for the reconstruction of projection images. Projection research results of breast phantom obtained by means of the elaborated measurement set-up and compared with mammography simulations (acquired through overlapping of X-ray tomographic images) show that ultrasonic projection method presented in this paper (so-called ultrasonic mammogra-phy) can be applied to the woman's breast and be used as a diagnosis for an early detection of cancerous lesions. It can, most of all, be used as an alternative or complementary method to standard mammography, which is harmful because of ionizing radiation and invasive due to the mechanical compression of tissue.
Go to article

Abstract

The paper presents an analysis of the results of ultrasound transmission tomography (UTT) imaging of the internal structure of a breast elastography phantom used for biopsy training, and compares them with the results of CT, MRI and, conventional US imaging; the results of the phantom examination were the basis for the analysis of UTT method resolution. The obtained UTT, CT and MRI images of the CIRS Model 059 breast phantom structure show comparable (in the context of size and location) heterogeneities inside it. The UTT image of distribution of the ultrasound velocity clearly demonstrates continuous changes of density. The UTT image of derivative of attenuation coefficient in relation to frequency is better for visualising sharp edges, and the UTT image of the distribution of attenuation coefficient visualises continuous and stepped changes in an indirect way. The inclusions visualized by CT have sharply delineated edges but are hardly distinguishable from the phantom gel background even with increased image contrast. MRI images of the studied phantom relatively clearly show inclusions in the structure. Ultrasonography images do not show any diversification of the structure of the phantom. The obtained examination results indicate that, if the scanning process is accelerated, ultrasound transmission tomography method can be successfully used to detect and diagnose early breast malignant lesions. Ultrasonic transmission tomography imaging can be applied in medicine for diagnostic examination of women’s breasts and similarly for X-ray computed tomography, while eliminating the need to expose patients to the harmful ionising radiation.
Go to article

Abstract

This paper presents the results of acoustic field distribution simulations for the 1024-element ultrasonic ring array intended for the diagnosis of female breast tissue with the use of ultrasound tomography. For the purpose of analysing data, all acoustic fields created by each elementary transducer were combined. The natural position of the focus inside the ultrasonic ring array was changed by altering activation time of individual transducers in sectors consisting of 32, 64, and 128 ultrasonic transducers. Manipulating the position of the focus inside the array will allow to concentrate the ultrasonic beam in a chosen location in the interior space of the ring array. The goal of this research is to receive the best possible quality of images of cross-sections of the female breast. The study also analysed the influence of the acoustic field distribution on the inclination of the beam. The results will enable to choose an optimal focus and an optimal number of activated transducers.
Go to article

Abstract

The purpose of this work is to examine the possibility of using multi-angle conventional ultrasound B-mode scanning in efficient 3-D imaging. In the paper, the volume of an object is reconstructed from vertical projections registered at fixed angular positions of the multi-element linear ultrasonic probe rotated in relation to the object submerged in water. The possible configurations are: vertical lateral, vertical top or vertical bottom. In the vertical lateral configuration, the ultrasonic probe acquires 2-D images of object’s vertical cross-sections, turning around its lateral surface. In the vertical top or bottom configuration, the ultrasonic probe acquires 2-D images of the object’s vertical cross-sections, turning on the horizontal plane over the top or under the bottom surface of the object. The method of recording 3-D volume of an object’s structure and reconstruction algorithm have been designed. Studies show the method in the vertical top or bottom configuration could be successfully applied to the effective 3-D visualisation of the structure of the female breast in vivo as the new complement ultrasonic imaging modality in the prototype of the developed ultrasound tomography scanner.
Go to article

This page uses 'cookies'. Learn more