Search results

Filters

  • Journals
  • Date

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

The paper investigates the air quality in the urban area of Warsaw, Poland. Calculations are carried out using the emissions and meteorological data from the year 2012. The modeling tool is the regional CALMET/CALPUFF system, which is used to link the emission sources with the distributions of the annual mean concentrations. Several types of polluting species that characterize the urban atmospheric environment, like PM10, PM2.5, NOx, SO2, Pb, B(a)P, are included in the analysis. The goal of the analysis is to identify the most polluted districts and polluting compounds there, to check where the concentration limits of particular pollutants are exceeded. Then, emission sources (or emission categories) which are mainly responsible for violation of air quality standards and increase the adverse health effects, are identified. The modeling results show how the major emission sources – the energy sector, industry, traffic and the municipal sector – relate to the concentrations calculated in receptor points, including the contribution of the transboundary inflow. The results allow to identify districts where the concentration limits are exceeded and action plans are needed. A quantitative source apportionment shows the emission sources which are mainly responsible for the violation of air quality standards. It is shown that the road transport and the municipal sector are the emission classes which substantially affect air quality in Warsaw. Also transboundary inflow contributes highly to concentrations of some pollutants. The results presented can be of use in analyzing emission reduction policies for the city, as a part of an integrated modeling system.
Go to article

Abstract

This paper presents signal processing aspects for automatic segmentation of retinal layers of the human eye. The paper draws attention to the problems that occur during the computer image processing of images obtained with the use of the Spectral Domain Optical Coherence Tomography (SD OCT). Accuracy of the retinal layer segmentation for a set of typical 3D scans with a rather low quality was shown. Some possible ways to improve quality of the final results are pointed out. The experimental studies were performed using the so-called B-scans obtained with the OCT Copernicus HR device.
Go to article

This page uses 'cookies'. Learn more