Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

In the present work, amine based extractant and its mixture with cationic and solvating extractants were tested for the extraction of HCl from chloride solution containing Al(III). The chloride feed solution resulted from the leaching of spent HDS (hydro-desulfurization) catalysts. For this purpose, amine extractants, such as TOA (trioctyl amine), Alamine 336 (a mixture of tri-octyl/decyl amine), Alamine 308 (tri-isooctyl amine), and TEHA (tri 2-ethylhexyl amine) were used and the extraction and stripping behavior of HCl was compared. The extracted HCl was easily stripped from loaded TEHA phase, when compared with the other tested tertiary amine system. Solvent extraction reaction of HCl by TEHA was determined from the extraction data. Unlike TOA and Alamine 336, adding cationic extractant to TEHA had negligible effect on the extraction and stripping of HCl. In our experimental ranges, no Al was extracted by amines and pure HCl was recovered. MaCabe- Thiele diagrams for the extraction and stripping of HCl by TEHA were constructed.
Go to article

Abstract

Salt stress causes severe reduction in the growth and yield of rice plants. The ability to maintain cellular ion homeostasis is of importance to help the plant survive under salt stress. Salt overly sensitive 1 (SOS1), a plasma membrane Na+/H+ antiporter, has been proven to play critical roles in Na+ exclusion out of the cell, hence contributing to salt tolerance in plants. In this study, we analyzed the natural nucleotide polymorphisms occuring within the entire coding sequence as well as the upstream region of the OsSOS1 gene by comparing the sequences of two contrasting rice genotypes, namely, Nipponbare (salt-sensitive) and Pokkali (salt-resistant). In total, six nucleotide polymorphisms were identified in the coding sequence, and 44 nucleotide substitutions, 225-bp-insertion and 65-bp-deletion were observed in the upstream region of the OsSOS1 gene. Futher in silico analysis revealed that two out of six nucleotide polymorphisms in the coding sequence were non-synonymous (A1600G, G2204A) which led to two amino acid substitutions (T534A, S735N, respectively) positioned in the C-terminal domain of OsSOS1 transporter, but caused no effect on protein properties. In the upstream region of OsSOS1 gene, 44 single nucleotide polymorphisms and two INDELs were identified, in which nucleotide substitutions at position -1392, -1389, -822, -583, +57 and an insertion at position -1035 caused change in cis-regulatory elements. Analysis of OsSOS1 expression revealed that salt induced the expression of the gene in the roots, but not in the leaves in both investigated rice cultivars.
Go to article

This page uses 'cookies'. Learn more