Search results

Filters

  • Journals

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

In this paper, an experimental surface roughness analysis in milling of tungsten carbide using a monolithic torus cubic boron nitride (CBN) tool is presented. The tungsten carbide was received using direct laser deposition technology (DLD). The depth of cut (ap), feed per tooth (fz) and tool wear (VBc) influence on surface roughness parameters (Ra, Rz) were investigated. The cutting forces and accelerations of vibrations were measured in order to estimate their quantitative influence on Ra and Rz parameters. The surface roughness analysis, from the point of view of milling dynamics was carried out. The dominative factor in the research was not feed per tooth fz (according to a theoretical model) but dynamical phenomena and feed per revolution f connected with them.
Go to article

Abstract

In this paper, an analysis of various factors affecting machined surface texture is presented. The investigation was focused on ball end mill inclination against the work piece (defined by surface inclination angle a. Surface roughness was investigated in a 3D array, and measurements were conducted parallel to the feed motion direction. The analysis of machined surface irregularities as a function of frequency (wavelength A), on the basis of the Power Density Spectrum - PDS was also carried out. This kind of analysis is aimed at valuation of primary factors influencing surface roughness generation as well as its randomness. Subsequently, a surface roughness model including cutter displacements was developed. It was found that plain cutting with ball end mill (surface inclination angle a= 0°) is unfavorable from the point of view of surface roughness, because in cutter’s axis the cutting speed vc ~ 0 m/min. This means that a cutting process does not occur, whereas on the machined surface some characteristics marks can be found. These marks do not appear in case of a* 0°, because the cutting speed vc * 0 on the fill I length of the active cutting edge and as a result, the machined surface texture is more homogenous. Surface roughness parameters determined on the basis of the model including cutter displacements are closer to experimental data for cases with inclination angles a* 0°, in comparison with those determined for plain cutting (a= 0°). It is probably caused by higher contribution in surface irregularities generation of plastic and elastic deformations cumulated near the cutter’s free end than kinematic and geometric parameters, as well as cutter displacements.
Go to article

This page uses 'cookies'. Learn more