Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The motivation of this work was to define the reburning potential of sewage sludge gasification gas (syngas). Numerical simulation of co-combustion process of syngas in hard coal-fired boiler has been done. All the calculations were performed using the Chemkin program. Plug-Flow Reactor model was used. The calculations were modelled using GRI-Mech 2.11 mechanism. The highest NO conversions are obtained at the temperature of about 1000-1200 K. The highest reduction efficiency was achieved for the molar flow ratio of syngas equal to 15%. The combustion of hard coal with sewage sludge - derived syngas reduces NO emissions and the amount of coal needed to produce electricity and heat. Advanced reburning, which is a more complicated process gives efficiency of up to 80%. The calculations show that the analyzed syngas can yield better results.
Go to article

Abstract

In the paper, a numerical simulation of the co-combustion process of sewage sludge gasifi cation syngas in a hard coal-fi red boiler was done. Two different syngases (SS1 and SS2) were taken in consideration. Additional (reburning) fuel was injected into the combustion chamber, which was modeled as a plug fl ow reactor (PFR). The molar fl ow rates ratio of reburning fuel is assumed to be 5.0%, 7.5%, 10.0%, 12.5% and 15.0% of the whole exhaust. The simulations were conducted for constant pressure equal to 1atm for temperatures range from 600 to 1400 K. It was assumed that a fl ue gases which enters the reburning zone contains 300 ppm of NO and that during combustion only NO is formed without other NOx. Results show that that gas from sewage sludge gasifi cation gives reburning effi ciency of up to 90%. Calculation shows also an optimum value of temperature reburning for gas from sewage sludge gasifi cation which is equal to 1200 K. The type of the sewage sludge has no strong infl uence on the NO reduction.
Go to article

This page uses 'cookies'. Learn more