Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Abstract Biscutella laevigata L. is known as a Tl hyperaccumulator. In Poland Biscutella laevigata occurs in the Tatra Mts (Western Carpathians) and on the calamine waste heap in Bolesław near Olkusz (Silesian Upland). The purpose of this work was to evaluate whether plants of both populations were able to accumulate an elevated amount of thallium in their tissues. The plants were cultivated in calamine soil in a glasshouse for a season and studied at different ages – from 2-week-old seedlings to 10-month-old adults. Additionally, the plants were grown for ten weeks in calamine soil with EDTA to enhance Tl bioavailability. The total content of Tl in plant tissues after digestion was determined by ICP-MS, whereas its distribution in leaves was studied by LA-ICP-MS. Of the total content of Tl in the soil in the range of (15.2–66.7) mg∙kg−1d.m., only (1.1–2.1) mg∙kg−1d.m. was present in a bioavailable form. The mean content in all the plants grown on the soil without EDTA was 98.5 mg∙kg−1d.m. The largest content was found in leaves – 164.9 mg∙kg−1d.m. (max. 588.2 mg∙kg−1d.m.). In the case of plants grown on the soil enriched with EDTA, the mean content in plants increased to 108.9 mg∙kg−1d.m., max. in leaves – 138.4 mg∙kg−1d.m. (max. 1100 mg∙kg−1d.m.). The translocation factor was 6.1 in the soil and 2.2 in the soil with EDTA; the bioconcentration factor amounted to 10.9 and 5.8, respectively. The plants from both populations did not contain a Tl amount clearly indicating hyperaccumulation (100–500 mg∙kg−1d.m.), however, high (>1) translocation and bioconcentration factors suggest such an ability. It is a characteristic species-wide trait; B. laevigata L. is a facultative Tl hyperaccumulator. The largest Tl amount was located at the leaf base, the smallest at its top. Thallium also occurred in trichomes, which was presented for the first time; in this way plants detoxify Tl in the above-ground parts. Leaves were much more hairy in the Bolesław plants. This is an adaptation for growth in the extreme conditions of the zinc-lead waste heap with elevated Tl quantity.
Go to article

Abstract

Heavy metal (As, Mn, Ni, Sn, Ti) concentrations were determined in soil and plant samples collected in different areas of the railway junction Iława Główna, Poland. Soil and plant samples were collected in four functional parts of the junction, i.e. the loading ramp, main track within the platform area, rolling stock cleaning bay and the railway siding. Four plant species occurring in relatively higher abundance were selected for heavy metals analysis, although in the loading ramp and platform areas only one species could be collected in the amount which makes chemical analysis possible. The selected species included three perennials (Daucus carota, Pastinaca sativa and Taraxacum officinale) and one annual plant (Sonchus oleraceus). The entire area of the railway junction showed elevated concentrations of heavy metals when compared to the control level. It was most pronounced for the platform area and railway siding. The concentration of arsenic, manganese and nickel in plants growing in these parts of the junction exceeded the toxic level. The highest contamination of soil and plants found in the platform area suggested advanced emission process of the analyzed metals from wheel and track abrasion. Literature review showed that the concentration of the investigated metals in soil was generally higher than that found in centers of cities and along traffic roads proving that the railway is an important linear source of soil contamination
Go to article

This page uses 'cookies'. Learn more