Search results

Filters

  • Journals
  • Date

Search results

Number of results: 46
items per page: 25 50 75
Sort by:

Abstract

Particles of the Fe-Al type (less than 50 µm in diameter) were sprayed onto the 045 steel substrate by means of the detonation method. The TEM, SAED and EDX analyses revealed that the Fe-Al particles have been partially melted in the experiment of coating formation. Particle undergone melting even within about 80% of its volume. Therefore, solidification of the melted part of particles was expected. Solidification differed significantly due to a large range of chemical composition of applied particles (from 15 at.% Al up to 63 at.% Al). A single particle containing 63 at.% Al was subjected to the detailed analysis, only. The TEM / SAED techniques revealed in the solidified part of particle three sub-layers: an amorphous phase, A ε , periodically situated FeAl + Fe2Al5 phases, and a non-equilibrium phase, Nε . A hypothesis dealing with the inter-metallic phases formation in such a single particle of the nominal composition 0 N = 0.63 is presented. At first, the solid / liquid system is treated as an interconnection: substrate liquid nonmelted particle part / / . Therefore, it is suggested that the solidification occurs simultaneously in two directions: towards a substrate and towards a non-melted part of particle. The solidification mechanism is referred to the Fe-Al meta-stable phase diagram. It is shown that the melted part of particle solidifies rapidly according to the phase diagram of meta-stable equilibrium and at a significant deviation from the thermodynamic equilibrium.
Go to article

Abstract

Discusses an attempt to optimize the operation of an electric furnace slag to be decopperisation suspension of the internal recycling process for the production of copper. The paper presents a new method to recover copper from metallurgical slags in arc-resistance electric furnace. It involves the use of alternating current for a first period reduction, constant or pulsed DC in the final stage of processing. Even distribution of the electric field density in the final phase of melting caused to achieve an extremely low content of metallic copper in the slag phase. They achieved by including the economic effects by reducing the time reduction.
Go to article

Abstract

The suspension of the copper droplets in the post-processing slag taken directly from the KGHM-Polska Miedź S.A. Factory (from the direct-to-blister technology as performed in the flash furnace) was subjected to the special treatment with the use of the one of the typical industrial reagent and with the complex reagent newly patented by the authors. This treatment was performed in the BOLMET S.A. Company in the semi-industrial conditions. The result of the CaCO3, and Na2CO3 chemicals influence on the coagulation and subsequent sedimentation of copper droplets on the crucible bottom were subjected to comparison with the sedimentation forced by the mentioned complex reagent. The industrial chemicals promoted the agglomeration of copper droplets but the coagulation was arrested / blocked by the formation of the lead envelope. Therefore, buoyancy force forced the motion of the partially coagulated copper droplets towards the liquid slag surface rather than sedimentation on the crucible bottom. On the other hand, the complex reagent was able to influence the mechanical equilibrium between copper droplets and some particles of the liquid slag as well as improve the slag viscosity. Finally, the copper droplets coagulated successfully and generally, were subjected to a settlement on the crucible bottom as desired / requested.
Go to article

Abstract

Some metallographic studies performed on the basis of the massive forging steel static ingot, on its cross-section, allowed to reveal the following morphological zones: a/ columnar grains (treated as the austenite single crystals), b/ columnar into equiaxed grains transformation, c/ equiaxed grains at the ingot axis. These zones are reproduced theoretically by the numerical simulation. The simulation was based on the calculation of both temperature field in the solidifying large steel ingot and thermal gradient field obtained for the same boundary conditions. The detailed analysis of the velocity of the liquidus isotherm movement shows that the zone of columnar grains begins to disappear at the first point of inflection and the equiaxed grains are formed exclusively at the second point of inflection of the analyzed curve. In the case of the continuously cast brass ingots three different morphologies are revealed: a/ columnar structure, b/ columnar and equiaxed structure with the CET, and c/ columnar structure with the single crystal formation at the ingot axis. Some forecasts of the temperature field are proposed for these three revealed morphologies. An analysis / forecast of the behavior of the operating point in the mold is delivered for the continuously cast ingot. A characteristic delay between some points of breakage of the temperature profile recorded at the operating point and analogous phenomena in the solidifying alloy is postulated.
Go to article

Abstract

Some eutectic stripes have been generated in a hexagonal (Zn) - single crystal. The stripes are situated periodically with the constant interstripes spacing. The eutectic structure in the stripes consists of strengthening inter-metallic compound, Zn16Ti, and (Zn) – solid solution. The rod-like irregular eutectic structure (with branches) appears at low growth rates. The regular lamellar eutectic structure is observed at middle growth rates. The regular rod-like eutectic structure exists exclusively in the stripes at some elevated growth rates. A new thermodynamic criterion is recommended. It suggests that this eutectic regular structure is the winner in a morphological competition for which the minimum entropy production is lower. A competition between the regular rod-like and the regular lamellar eutectic growth is described by means of the proposed criterion. The formation of branches within irregular eutectic structure is referred to the state of marginal stability. A continuous transitions from the marginal stability to the stationary state are confirmed by the continuous transformations of the irregular eutectic structure into the regular one.
Go to article

Abstract

Trial series of cast alloy MO59 obtained from qualified scrap was investigated. SEM and TEM of resulting precipitates were conducted. The SEM analysis demonstrated the dependence of silicon, phosphorus, iron, chromium and nickel in the composition of the so-called hard precipitates. TEM analysis showed the formation of phase AlFeSi and AlCr. Made studies have shown the important role of the composition of the batch melts brass CuZn39Pb2 type. The analysis of SEM and TEM resulting precipitates pointed to the formation of various forms of divisions, only one of which was described in the literature character of the so-called hard inclusions. The SEM studies demonstrated the dependence of the occurrence of inclusions rich in silicon, phosphorus, iron, chromium and nickel. In contrast, additional TEM analysis indicated the formation of AlFeSi phase type and AlCr. The results of the analyses referred to the structure of the batch. Due to the difficulty of obtaining recycled materials that do not contain these elements necessary to carry out further analyzes in the direction of defining the role of phosphorus in the formation of the so-called hard inclusions.
Go to article

Abstract

A vertical cut at the mid-depth of the 15-ton forging steel ingot has been performed by curtesy of the CELSA – Huta Ostrowiec plant. Some metallographic studies were able to reveal not only the chilled undersized grains under the ingot surface but columnar grains and large equiaxed grains as well. Additionally, the structural zone within which the competition between columnar and equiaxed structure formation was confirmed by metallography study, was also revealed. Therefore, it seemed justified to reproduce some of the observed structural zones by means of numerical calculation of the temperature field. The formation of the chilled grains zone is the result of unconstrained rapid solidification and was not subject of simulation. Contrary to the equiaxed structure formation, the columnar structure or columnar branched structure formation occurs under steep thermal gradient. Thus, the performed simulation is able to separate both discussed structural zones and indicate their localization along the ingot radius as well as their appearance in term of solidification time.
Go to article

Abstract

This article discusses issues related to continuous casting of brass. The tested material was CuZn39Pb2 brass with the use of continuous casting and different parameters of the process. The position consists of a melting furnace with a graphite refining pot of about 4000 cm3 chuting capacity, a graphite crystallizer of 9,5 mm nominal diameter, a primary and secondary cooling system and an extracting system as well. The analysis was carried out in terms of technological parameters of the process and type of charge. Highlighted: feedrate ingot, number of stops, and technological temperatures. The surface quality of the obtained ingots and the structure were analyzed. The most favorable conditions were indicated and technological recommendations indicated. They have been distinguished for ingots for plasticity and other technologies. Favorable casting conditions are low feed and low temperature. Due to the presence of impurities coming from the charge it is disadvantageous to have Ni greater than 0.053% by mass, and Fe more than 0.075% by mass. It is recommended to maintain a high zinc content in the melt which is associated with non-overheating of the metal during casting and earlier melting.
Go to article

Abstract

There are presents the internal recycling in anode furnace, in addition to mainly blister copper and converter copper. During the process there arise the two types of semi-finished products intended for further pyro metallurgical processing: anode copper and anode slag. The stream of liquid blister copper enters into the anode furnace treatment, in which the losses are recovered, e.g. copper, resulting from oxidation and reduction of sulfides, oxides and the oxidation of metallic compounds of lead, zinc and iron. In the liquid phase there are still gaseous states, which gives the inverse relationship relating to the solid phase, wherein the gases found an outlet in waste gas or steam. The results of chemical analysis apparently differ from each other, because crystallite placement, the matrix structure and the presence of other phases and earth elements are not compared, which can be regained in the process of electrorefining. One should not interpret negatively smaller proportion of copper in the alloy, since during the later part of the production more elements can be obtained, for example from sludge, such as platinum group metals and lanthanides. According to the research the quality of blister copper, to a large extent, present in the alloy phase to many other elements, which can be recovered.
Go to article

Abstract

The scope of work included the launch of the process of refining slag suspension in a gas oven using a variety of technological additives. After the refining process (in the context of copper recovery), an assessment of the effect of selected reagents at the level of the slag refining suspension (in terms of copper recovery). Method sieve separated from the slag waste fraction of metallic, iron - silicate and powdery waste. Comparison of these photographs macroscopic allowed us to evaluate the most advantageous method of separating metallic fraction from the slag. After applying the sample A (with KF2 + NaCl) we note that in some parts of the slag are still large amounts of metallic fraction. The fraction of slag in a large majority of the elements has the same size of 1 mm, and a larger portion of the slag, the size of which is from 2 to 6 mm. Definitely the best way is to remove the copper by means of the component B (with NaCl ) and D (with KF2 ). However, as a result of removing the copper by means of component C (with CaO) were also obtained a relatively large number of tiny droplets of copper, which was problematic during segregation. In both cases we were able to separate the two fractions in a fast and simple manner.
Go to article

Abstract

The copper droplets contained in the post-processing liquid slag are subjected to the treatment by the complex reagent. The complex reagent has been recently elaborated and patented in frame of the Grant No. PBS3/A5/45/2015. In particular, the complex reagent is dedicated to the post-processing slags coming from the Smelter and Refinery Plant, Głogów, as a product of the direct-to-blister technology performed in the flash furnace. The recently patented complex reagent effectively assists not only in agglomeration, and coagulation but also in the deposition of the copper droplets at the bottom of crucible / furnace as well. The treatment of the postprocessing slags by the complex reagent was performed in the BOLMET S.A. Company as in the industrial conditions which were similar to those usually applied in the KGHM – Polish Copper (Smelter and Refinery Plant, Głogów). The competition between buoyancy force and gravity is studied from the viewpoint of the required deposition of coagulated copper droplets. The applied complex reagent improves sufficiently the surface free energy of the copper droplets. In the result, the mechanical equilibrium between coagulated copper droplets and surrounding liquid slag is properly modified. Finally, sufficiently large copper droplets are subjected to a settlement on the crucible / furnace bottom according to the requirements.
Go to article

Abstract

Production processes at KGHM are complex and require from customers products of constantly higher quality at relatively lowest prices. Such situation results in an increase of the importance of optimisation of processes. As products and technologies change rapidly, technologists at the plant in Głogów have less time to achieve optimisation basing on own experiences. Analysing a particular process, we can e.g. detect occurring disturbances, find factors having an influence on quality problems, select optimal settings or compare various production procedures. Analysis of the course of production process is the basis of process optimisation. One optimisation in case of the process of decopperisation of flash slag can be a change of a technological additive to a less energy-consuming one, and its final result can be an improvement of the productivity index, a change of the relation between final effects and born expenditures, as well as optimisation of production costs.
Go to article

This page uses 'cookies'. Learn more