Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The welfare and healthy growth of poultry under intensive feeding conditions are closely related to their living environment. In spring, the air quality considerably decreases due to reduced ventilation and aeration in cage systems, which influences the meat quality and health of broilers during normal growth stages. In this study, we analyzed the airborne bacterial communities in PM2.5 and PM10 in cage broiler houses at different broiler growth stages under intensive rearing conditions based on the high-throughput 16S rDNA sequencing technique. Our results revealed that PM2.5, PM10 and airborne microbes gradually increased during the broiler growth cycle in poultry houses. Some potential or opportunistic pathogens, including Acinetobacter, Pseudomonas, Enterococcus, Microbacterium, etc., were found in the broiler houses at different growth stages. Our study evaluated variations in the microbial communities in PM2.5 and PM10 and potential opportunistic pathogens during the growth cycle of broilers in poultry houses in the spring. Our findings may provide a basis for developing technologies for air quality control in caged poultry houses.
Go to article

Abstract

The effects of Mg and Ca on sulfide modification of sulphur steel were studied to elucidate the difference between micromagnesium treatment and micro-calcium treatment for the inclusion of sulphur steel. The results show that the inclusions in the steel appeared with an oxide core of Al2O3 and MnS wrapped. After the addition of Mg, the core was changed to spinel, and the MnS coating was changed to Mn-Mg-S. After Ca was added, the core was changed to Ca-Al-O, and the MnS coating was changed to Mn-Ca-S. The Mg content was higher than Ca content in the sulfides of the steel. Therefore, Mg was more effective than Ca in terms of sulfide modification with the same content of Mg and Ca in steel, but the yielding rate of Mg was lower than that of Ca. The Mg content in the oxide core was higher than Mg of the coating of the inclusions in the steel treated with Mg or Mg-Ca. In contrast, the Ca content in the oxide core was lower than Ca of the coating of the inclusions in the steel treated with Ca or Mg-Ca. MnS formed and precipitated during the melt solidification process. The complex sulfide (Mg-Mn-S) was precipitated around MgO·Al2O3 in the Mg treated steel during the cooling process. CaS inclusion was precipitated on the CaO·Al2O3 inclusions in the liquid Ca-treated steel. Thus, CaS was formed first, whereas MnS was formed during the cooling process, followed by the formation of complex sulfide (CaS+MnS), which finally precipitated around CaO·Al2O3 in the Ca-treated steel.
Go to article

This page uses 'cookies'. Learn more