Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

The Intrauterine fetal development process is complicated and affected by many regulating factors such as maternal nutritional status, transcription factors and adipokines. Adipokines are kinds of active substances secreted by adipose tissue, including more than 50 kinds of molecules. To explore the correlation between calf birth weights and adipokines including adiponectin, leptin, visfatin, and IGF-1 in cows venous and venous cord blood. Fifty-four healthy multiparous Chinese Holstein cows were used; in which, cows with a calf weight less than 40 kg were included in group A (n=9); those with a calf weight between 40 kg~45 kg were included in group B (n=25) and ≥45 kg were included in group C (n=20), venous blood and cord venous blood was collected. An ELISA kit was used to evaluate the concentration of adiponectin, leptin, visfatin, and IGF-1, correlations between index-index and index-calf birth weight were analysed. In both cows venous and cord venous blood, adiponectin, leptin, visfatin, and IGF-1 levels were significantly correlated with each other (p<0.01), and levels of these adipokines in venous blood were significantly higher than cord venous blood (p<0.01). Adiponectin, leptin, visfatin, and IGF-1 in venous cord blood were positively correlated with calf birth weights, and significantly correlated with calf birth weights respectively (p<0.01). Our study showed that adiponectin, leptin, and IGF-1 were found in venous blood and cord venous blood, and adiponectin, leptin, and IGF-1 in venous and cord venous blood potentially inter-regulated each other; adiponectin, leptin, and IGF-1 in venous blood were not significantly correlated with calf birth weights, while adiponectin, leptin, visfatin, and IGF-1 in venous cord blood were significantly correlated with calf birth weights, respectively.
Go to article

Abstract

The single-phase voltage loss is a common fault. Once the voltage-loss failure occurs, the amount of electrical energy will not be measured, but it is to be calculated so as to protect the interest of the power supplier. Two automatic calculation methods, the power substitution and the voltage substitution, are introduced in this paper. Considering the lack of quantitative analysis of the calculation error of the voltage substitution method, the grid traversal method and MATLAB tool are applied to solve the problem. The theoretical analysis indicates that the calculation error is closely related to the voltage unbalance factor and the power factor, and the maximum calculation error is about 6% when the power system operates normally. To verify the theoretical analysis, two three-phase electrical energy metering devices have been developed, and verification tests have been carried out in both the lab and field conditions. The lab testing results are consistent with the theoretical ones, and the field testing results show that the calculation errors are generally below 0.2%, that is correct in most cases.
Go to article

Abstract

Abstract Extensive studies have been performed to elucidate the role of brassinosteroids (BRs), an important class of phy-tohormone in plant growth, development, and photomorphogenesis. Different wavelengths of light recognized by photoreceptors play a crucial role in plant development. The role of different photoreceptors in BR signaling has not been analyzed. Here we used photoreceptor single mutants, double mutants and even a quadruple mutant to analyze BR-dependent hypocotyl growth and gene regulation. All the photoreceptor mutants differed from the controls in their response to BR, and hypocotyl elongation as well as BR marker gene regulation were inhibited by application of propiconazole (PCZ), a BR biosynthesis inhibitor. In addition, altered Phytochrome and Cryptochrome expression in brassinosteroid insensitive 1 mutant bri1-5 and brassinazole-resistant 1 dominant mutant bzr1-D indicated that BR negatively regulates photoreceptors in transcriptional levels. This is the first study to investigate the connections between BR and photoreceptors in Arabidopsis.
Go to article

This page uses 'cookies'. Learn more