Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 43
items per page: 25 50 75
Sort by:

Abstract

The article is a case study of the steel milling ring casting of about 6 tonnes net weight. The casting has been cast in the steel foundry the authors have been cooperating with. The aim was to analyse the influence of the shape of the chills and the material which was used to make them on the casting crystallization process. To optimally design the chills the set of the computer simulation has been carried out with 3 chills’ shape versions and 3 material’s versions and the results have been compared with the technology being in use (no chills). The proposed chills were of different thermal conductivity from low to high. Their shapes were obviously dependant on the adjacent casting surface geometry but were the result of the attempt to optimise their effect with the minimum weight, too. The chills working efficiency was analysed jointly with the previously designed top feeders system. The following parameters have been chosen to compare their effectiveness and the crystallization process: time to complete solidification and so-called fed volume describing the casting feeding efficiency. The computer simulations have been carried out with use of MagmaSoft v. 5.2 software. Finally, the optimisation has led to 15% better steel yield thanks to 60% top feeders weight reduction and 40% shorter solidification time. The steel ring cast with use of such technology fulfil all quality criteria.
Go to article

Abstract

In this study, we examined whether and to what extent oxidative stress is induced in seedlings of two winter triticale (Triticosecale Wittm.) varieties (susceptible Tornado and resistant Witon) in response to infestation by the cereal grain aphid (Sitobion avenae L.) and bird-cherry-oat aphid (Rhopalosiphum padi L.). We compared the level of hydrogen peroxide (H2O2) and lipid peroxidation products as well as markers of protein damage (protein-bound thiol and carbonyl groups). The studied parameters were measured at 6, 24, 48 and 96 h post-initial aphid infestation compared to the non-infested control seedlings. Our studies indicated that the cereal aphid feeding evoked oxidative stress in the triticale seedlings. Cereal aphid feeding increased the H2O2 level in triticale tissues, with maximum levels observed at 24 and 48 h post-infestation. Triticale infestation with aphids also increased lipid peroxidation products in triticale seedlings, with the maximal levels at 48 or 96 h post-infestation. Further, there was a reduction in protein thiol content and an increase in protein carbonyl content in the triticale seedlings after infestation with female aphids. Stronger triticale macromolecule damages were evoked by the oligophagous aphid R. padi. There was a more substantial protein thiol content reduction in the resistant Witon cultivar and higher accumulation of protein-bound carbonyls in the tissues of the susceptible Tornado cultivar. The changes were proportional to the aphid population and the time of aphid attack. These findings indicate that the defensive strategies against cereal aphid (S. avenae and R. padi) infestation were stimulated in triticale Tornado and Witon seedlings. Our results explain some aspects and broaden the current knowledge of regulatory mechanisms in plant-aphid interactions.
Go to article

Abstract

The aim of our research was to connect the detailed study of fruit anatomy of black crowberry (Empetrum nigrum) with identification and detection of the main non-anthocyanin polyphenolic compounds. Our experimental results showed that the highest accumulation of anthocyanin bodies occurred in mature fruits in outer layers during fruit development. The shape of the anthocyanin bodies was most often globular, spherical, hemispherical and intermediate types were present only occasionally. Mature cells of the gynoecium and pericarp generally contain anthocyanin bodies incorporated inside vacuoles. The observed compounds accumulated in cells were rutin, quercetin and catechins, resveratrol; coumaric, p-coumaric, caffeic, ferulic acids, gallic, vanilic, syringic, cinnamic and caffeic acids. These compounds were selected because of their proposed positive effects on health. The analyses of the polyphenolic spectrum showed predominance of ferrulic acid together with gallic acid and catechins with quercetin.The aim of our research was to connect the detailed study of fruit anatomy of black crowberry (Empetrum nigrum) with identification and detection of the main non-anthocyanin polyphenolic compounds. Our experimental results showed that the highest accumulation of anthocyanin bodies occurred in mature fruits in outer layers during fruit development. The shape of the anthocyanin bodies was most often globular, spherical, hemispherical and intermediate types were present only occasionally. Mature cells of the gynoecium and pericarp generally contain anthocyanin bodies incorporated inside vacuoles. The observed compounds accumulated in cells were rutin, quercetin and catechins, resveratrol; coumaric, p-coumaric, caffeic, ferulic acids, gallic, vanilic, syringic, cinnamic and caffeic acids. These compounds were selected because of their proposed positive effects on health. The analyses of the polyphenolic spectrum showed predominance of ferrulic acid together with gallic acid and catechins with quercetin.
Go to article

Abstract

Metal ions can modify plant metabolism and change the level of biologically active components. In the present study, the impact of short-term exposure to strontium on the accumulation of the metal as well as the content of isoflavones in soybean sprouts was investigated. The seeds were germinated in hydroponics with 0, 1, 1.5, 2.5, 5.0, or 10.0 mM of Sr for 72 hours. The content of strontium was assessed using flame atomic absorption spectrometry and the amount of isoflavones was determined with high performance liquid chromatography. Dose-dependent accumulation of Sr and a linear correlation between the Sr concentration in the growth medium and the content of the element in the plant samples were observed. The largest changes in the isoflavone content, compared to the control, were noted in soy sprouts germinated in the presence of 5 and 10 mM of strontium. Daidzin, genistin, malonyldaidzin, and malonylgenistin were the dominant isoflavones and their content increased by approx. 28, 44, 34, and 47%, respectively, compared to the control. Low amounts of aglycones were found; moreover, their content decreased by ca. 19–30%. Our research can be important for obtaining a natural product enhanced with strontium and isoflavones, which contribute to prevention of osteoporosis associated with endogenous oestrogen deficits.
Go to article

Abstract

Athyrium christensenianum is considered an apogamous fern species that has originated from a hybrid of diploid sexual A. crenulatoserrulatum and tetraploid sexual A. decurrentialatum. There have been recent reports on tetraploid sexual A. christensenianum. In this study, I attempted to understand the relationships between triploid and tetraploid A. christensenianum. It appeared that tetraploid sexual A. christensenianum is of a hybrid origin between ancestral diploid sexual A. decurrentialatum and A. crenulatoserrulatum. In addition, triploid A. christensenianum did not seem to be of a hybrid origin between diploid sexual A. crenulatoserrulatum and tetraploid sexual A. decurrentialatum, rather of a hybrid origin between tetraploid sexual A. christensenianum and diploid sexual A. crenulatoserrulatum.
Go to article

Abstract

Clarifying the genetic background of the drought-tolerance trait is a crucial task that may help to improve plant performance under stress by a genetic engineering approach. Dehydration-responsive element-binding protein (DREB) is a transcription factor family which modulates many stress-responsive genes. In this study, we isolated a DREB homolog gene named ZmDREBtv from Zea mays var. Tevang-1. Using bioinformatic tools, a number of InDels and SNPs in ZmDREBtv sequence different from the reference accession were identified. In addition, based on deduced protein sequence similarity, ZmDREBtv was assigned to transcription factor DREB2 class as featured by a conserved DNA binding domain - AP2. The ZmDREBtv construct under thecontrol of the rd29A promoter was transformed into a drought-sensitive maize plant, K7 line. The transgenic plants were assessed with reference to molecular and phenotypic characteristics related to the drought-tolenrance trait. The results proved that the maize plants carrying ZmDREBtv gene showed enhanced tolerance and better performance to the water-deficit environment at different stages, compared to the wild-type plants.
Go to article

Abstract

Weed control is the most important constraint of autumn-sown chickpea production. Field experiments were conducted at three sites to evaluate the yield response of autumn-sown rainfed chickpea and weed control with PRE pendimethalin, POST pyridate, PRE isoxaflutole, preemergence (PRE) and postemergence (POST) of imazethapyr through hand-weeded, untreated and weed free checks. The results showed that pyridate was the safest option for weed control in chickpea. The highest grain yield of chickpea was obtained with application of pyridate followed by isoxaflutolein three sites. Imazethapyr and metribuzin caused higher visual injuries than the other treatments. Furthermore, the applications of pyridate, isoxaflutole, metribuzin, and pendimethalin, as well as PRE and POST imazethapyr were found to reduce the total weed densities (averaged for three locations) by as much as 76, 75, 75.4, 43, 64, and 64.5% within 30 days after treatments, respectively.
Go to article

Abstract

5.8S ribosomal RNA plays an important role in protein synthesis and eukaryotic ribosome translocation. Contact DNA insecticides based on antisense fragments of 5.8S ribosomal RNA gene of gypsy moth Lymantria dispar L. showed prospective insecticidal activity on its larvae. The most pronounced insecticidal effect was found for antisense fragments 10 and 11 nucleotides long (oligoRIBO-10 and oligoRIBO-11), whereas 12 nucleotides long fragment (oligoRIBO-12) caused the lowest level of insect mortality. This data corresponds to results obtained earlier using rabbit reticulocyte and wheat germ extracts, where maximum inhibition of protein synthesis was observed when a relevant oligomer 10-11 nucleotides long was used, whilst longer chain lengths resulted in reduced inhibition. Using oligoRIBO-11 fragment we have shown penetration of antisense oligonucleotides to insect cells through insects’ exoskeletons. MALDI technique registered the penetration of the oligoRIBO-11 fragment into insect cells after 30 min and a significant response of insect cells to the applied oligonucleotide after 60 min, which indicates not only that the oligonucleotide enters the insect cells, but also the synthesis of new substances in response to the applied DNA fragment. Contact DNA insecticides developed from the L. dispar 5.8S ribosomal RNA gene provide a novel biotechnology for plant protection using unmodified antisense oligonucleotides.
Go to article

Abstract

The article presents the results of permeability measurements of a zirconium alcohol coating applied on moulds and cores. The introduction extensively discusses the reasons for the application of protective coatings, as well as their advantages and disadvantages. Also, the problems related to the application of protective coatings are presented i.e. limited permeability and thus the possibility of the presence of gas-originated defects in the casts. Next, the paper discusses the methods of measuring the permeability of protective coating proposed by Falęcki and Pacyniak. The study also presents an indirect permeability measurement method. For the investigations, zirconium alcohol coatings with the three conventional viscosities 10, 20 and 30s were used. The viscosity was determined by means of the Ford cup with the clearance of 4mm. The coatings were applied onto profiles of Φ 50 x 50 mm, made of moulding sand consisting of a sand matrix with the mean grain size of dL = 0,11, 17, 24, 31 and 34 mm and phenol-formaldehyde resin. The effect of the matrix grain size on the permeability of the sand with and without a coating was determined.
Go to article

Abstract

Simplifications used in simulation program codes require the use of substitute parameters in the material databases (also called apparent or substitutive). On the one hand, they formally fit into the records used in the heat flow model, porosity, properties etc. and on the other hand they should be determined in conditions most similar to the real casting-mould system. The article presents results of a research on thermophysical parameters of gypsum mould used for precision casting moulds. Experiments were carried out on a cylindrical mould made of Plasticast gypsum, in which the heat source was a cylinder filled with liquid aluminium alloy of the temperature of 655°C. Energetic validation was carried out by using the NovaFlow&Solid ver. 6.3 simulation code. As a result of validation tests, substitute thermophysical parameters of gypsum were determined. For determined parameters, best-fit of solidification time from the experiment and simulation was obtained and the curves of gypsum mass heating were satisfactorily recreate.
Go to article

Abstract

An overview of the bibliography regarding the connection of knowledge about precious metal alloys and aspects of the use of computer aided technologies to the optimization of the jewelry casting processes is presented. An analysis of the usability of selected CAx systems was made: 1) for spatial design, called Rhinoceros 6 and 2) CAE system: NovaFlow & Solid (NF&S). The authors describe own research including data acquisition and evaluation of temperature variations during solidification of the selected Au-Ag-Cu alloy, with the identification of the phase transformations of this alloy. The intensity of heat exchange was changed (cooling of specimens under ambient temperature conditions – "normal" intensity and with the furnace – very slow cooling). The problem of completing the simulation database was pointed out and analyzed. Examples of simulations of casting selected jewelry (ring and signet) were given and compared with the result of the experiment realized in real conditions. It was confirmed that the optimization by combining experimental and simulation studies allows for the acquisition of new knowledge, and also facilitates the creation of new artistic designs of jewelry as well as performing the feasibility check, and then optimizing the chosen technology.
Go to article

Abstract

The objective of the study reported in this paper was to determine the effect of structure on thermal power of cast-iron heat exchangers which in this case were furnace chambers constituting the main component of household fireplace-based heating systems and known commonly as fireplace inserts. For the purpose of relevant tests, plate-shaped castings were prepared of gray iron with flake graphite in pearlitic matrix (the material used to date typically for fireplace inserts) as well as similar castings of gray cast iron with vermicular graphite in pearlitic, ferritic-pearlitic, and ferritic matrix. For all the cast iron variants of different structures (graphite precipitate shapes and matrix type), calorimetric measurements were carried out consisting in determining the heat power which is quantity representing the rate of heat transfer to the ambient environment. It has been found that the value of the observed heat power was affected by both the shape of graphite precipitates and the type of alloy matrix. Higher thermal power values characterize plate castings of gray iron with vermicular graphite compared to plates cast of the flake graphite gray iron. In case of plates made of gray cast iron with vermicular graphite, the highest values of thermal power were observed for castings made of iron with ferritic matrix.
Go to article

Abstract

The paper presents the results of investigations concerning the influence of gray cast iron modification on free vibration frequency of the disc casting. Three different chemical composition melts of gray cast iron were prepared in induction furnace. During gravity casting 0.05% and 0.3% mass of the Inolate modifier was added on stream of metal for changing graphite flakes in castings. Sound signal vibration of cast iron sample was registered by means on microphone for free vibration frequency measurements. Decreasing of free vibration frequency of modified cast iron in comparison with non modified castings was observed. Higher contents of modifier causes more decreasing of free vibration frequency. Cast iron with smaller contents of carbon and silicon have higher free vibration frequency in comparison with eutectic composition cast iron. Hardness of examined cast iron is lower when the more modifier is added during modification process. Free frequency is smaller with smaller Brinell hardness of disc casting. It was concluded that control of free vibration frequency of disc castings by means of chemical composition and modification process can improved comfort and safety of working parts.
Go to article

Abstract

Morocco is basically an agricultural country; almost 40% of the workforce is employed in this sector. Xylella fastidiosa is a xylem-inhabiting pathogen which can infect more than 300 plant species, although most host species are symptomless. Until relatively recently, X. fastidiosa was primarily limited to North and South America, but in 2013 a widespread epidemic of olive quick decline syndrome caused by this fastidious pathogen appeared in southeastern Italy, and later several cases of X. fastidiosa outbreaks have been reported in other European countries (France, Germany and Spain). Following these recently confirmed findings of X. fastidiosa in the European Union, this bacterium has become a serious threat to the Moroccan flora. The national phytosanitary authorities have adopted several measures to prevent the introduction of X. fastidiosa into the national territory by deciding, inter alia, to suspend importation of host plant species to the bacterium from infected areas. This paper presents the phytosanitary risk of this bacterium in Morocco.
Go to article

Abstract

One of the biggest problems for sand casting foundries must be the waste produced from disposable molds. Stricter environmental regulations make it harder to dispose of waste sand, so a truly competitive foundry does no longer only make great products, but also concentrates on a sustainable casting process. While methods for repurposing waste foundry sand are still limited, the internal circulation of such sands proves significant possibilities. This paper will focus on thermal reclamation of foundry sands in a special rotating drum furnace in a central facility to serve several foundries. Thermal reclamation is a process for handling foundry sands in elevated temperatures to combust unwanted substances from reusable base sand. The introduction focuses on background of the Finnish foundry business, the most common sand systems in Finland and their reclaim properties. The experimental part features presentation of the new reclamation plant process and the conducted test runs. The samples collected from each test run have been laboratory tested to assure proper sand quality. The results of this work showed that the reclamation of alkaline phenolic no-bake sands was excellent. Reclamation of green sands did not provide satisfactory results as expected and the reclamation of furan no-bake sands provided mixed results, as the raw material was imperfect to begin with. The most important result of this work is still the successful initiation of a centralized thermal reclamation plant, with the ability to reclaim sands of several foundries. With this all of industrial symbiosis, circular economy and sustainability advanced in Finland, and the future development of this plant provides even further opportunities and a possibility to spread the ideas on a global scale.
Go to article

Abstract

The results of estimation of home scrap addition in charge influence on durability and wear of casting instrumentation life in the highpressure casting technology using the hot chamber machine of alloy of AZ91 are presented. The wear of the following elements of the casting instrumentation so-called "casting set" as: syphon, plunger, sliding-rings, nozzle and injection moulding nozzle was estimated. A wear was estimated quantitative by registering the number of mould injections for different charges to the moment of element damage supervision. A damage had to be at such level that liquidated an element from further exploitation and necessary was an exchange on new or regeneration. In a final result allowed it the detailed determination of durability of the applied rigging elements in dependence on the type of the applied type of melt. It is noticed, that together with the increase of home-scrap participation in the charge wear of pressure machine instrumentation elements increases.
Go to article

Abstract

Use of welding technology for the repair of steel castings is particularly common in two areas. These include weld surfacing of protrusions that remained incomplete after casting, or filling the surface defects (cavities). These defects are more common for steel casting than for graphite cast iron, due to the lower fluidity of steel. This article describes a suitable technological process of repairing the defects on the casting using the welding technology. A specimen produced for this purpose was prepared by carving a groove into a cast steel plate 20 GL, which was then filled with a weld metal using MAG (135) technology. The following evaluation of the basic characteristics of the repaired site point to the suitability of the selected technological parameters of the repair procedure. Metallographic evaluation was carried out, further evaluation of mechanical properties by tensile test, bend test and Vickers hardness test. The proposed methodology for the evaluation repair of foundry defects in steel castings also meets the requirements for the approval of welding procedures in accordance with the relevant valid legislation.
Go to article

Abstract

The paper presents the research results of the influence of the precipitation hardening on hardness and microstructure of selected Al-Si and Al-Cu alloys obtained as 30 mm ingots in a horizontal continuous casting process. The ingots were heat treated in process of precipitation hardening i.e. supersaturation with subsequent accelerated or natural ageing. Moreover in the range of the study it has been carried out investigations of chemical constitution, microscopic metallographic with use of scanning electron microscope with EDS analysis system, and hardness measurements using the Brinell method. On basis of obtained results it has been concluded that the chemical constitution of the investigated alloys enables to classify them into Al alloys for the plastic deformation as EN AW-AlSi2Mn (alternatively cast alloy EN AC-AlSi2MgTi) and as EN AW-AlCu4MgSi (alternatively cast alloy EN AC-AlCu4MgTi) grades. Moreover in result of applied precipitation hardening has resulted in the precipitation from a supersaturated solid solution of dispersive particles of secondary phases rich in alloying element i.e. Si and Cu respectively. In consequence it has been obtained increase in hardness in case of AlSi2Mn alloy by approximately 30% and in case of AlCu4MgSi alloy by approximately 20% in comparison to the as-cast state of continuous ingots.
Go to article

Abstract

This article discusses the influence of Tungsten Inert Gas (TIG) surfacing of duplex cast steel on its hardness and structure. The samples of 24Cr-5Ni-2.5Mo ferritic-austenitic cast steel were subjected to single-overlay processes with the use of solid wire having the chemical composition similar to that of the duplex cast steel. As a result of the surfacing, the welds were obtained that had no welding imperfections with a smooth transition to the base material. In the test without the heat treatment, directly below the fusion line, we observe a ferrite band with a width of approximately 200 m without visible austenite areas. Some of the samples were then solution treated (1060°C). Both variants, without and after solution heat treatment, were subjected to testing. Significant changes in the microstructure of the joint were observed after the heat treatment process (heat affected zone and weld microstructure changes). In both areas, an increase in the austenite volume fraction after solution heat treatment was observed. Changes in the microhardness of the ferrite in the HAZ area directly below the fusion line were also observed.
Go to article

Abstract

The morphology, chemical composition and formation mechanism of non-metallic inclusions in magnetic alloy of Fe-Co-Ni-Cu-Al-Ti-Hf system were investigated. These alloys are used in manufacturing single-crystal permanent magnets. Modern methods for the identification of non-metallic inclusions, as well as computer simulation of the processes of their formation by Thermo Calc software were used in the work. It was found that studied alloy contains (Ti, Hf)S titanium and hafnium sulfides, (Ti, Hf)2SC titanium and hafnium carbosulfides, Ti2O2S titanium oxisulfide, HfO2 hafnium oxide, and Al2O3 aluminum oxide. No titanium and hafnium nitrides were found in the alloy. The bulk of nonmetallic inclusions are (Ti, Hf)2SC carbosulfides and (Ti, Hf)S sulfides. All carbides and many oxides are within carbosulfides and sulfides. When the sulfur content in the alloy is no more than 0.2%, and carbon content does not exceed 0.03%, carbosulfides are formed in the solidification range of the alloy and has an faceted compact form. If the sulfur content in the alloy becomes more than 0.2% and carbon content more than 0.03%, the carbosulfide formation begins before the alloy solidification or at the beginning stages of solidification. In this case, carbosulfides are dendritic and coarse. Such carbosulfides actively float in the solidified melt and often come to the surface of the castings. In this case, specific surface defects are formed in single-crystal magnets, which are called sulfide stains. All titanium and hafnium sulfides are formed at the lower part of solidification range and have elongated shape.
Go to article

Abstract

Detailed studies on the effects of pulsed laser interference heating on surface characteristics and subsurface microstructure of amorphous Fe80Si11B9 alloy are reported. Laser interference heating, with relatively low pulsed laser energy (90 and 120 mJ), but with a variable number (from 50-500) of consecutive laser pulses permitted to get energy accumulation in heated areas. Such treatment allowed to form two- Dimensional micro-islands of laser-affected material periodically distributed in amorphous matrix. The crystallization process of amorphous FeSiB ribbons was studied by means of scanning and transmission electron microscopy. Detailed microstructural examination showed that the use of laser beam, resulted in development of nanostructure in the heated areas of the amorphous ribbon. The generation of nanocrystalline seed islands created by pulsed laser interference was observed. This key result may evidently give new knowledge concerning the differences in microstructure formed during the conventional and lased induced crystallization the amorphous alloys. Further experiments are needed to clarify the effect of pulsed laser interference crystallization on magnetic properties of these alloys.
Go to article

Abstract

Archaeometallurgical investigations presented in this work focus on analysing the microstructure as well as mechanical properties of artefacts from the17th in form of findings performed from cast iron as well as copper casts. The presented research results extend the up-to-date knowledge and present the analysis of structural compounds found in the microstructure of the artefacts from the time dating back to the late Middle Ages in the region around Czestochowa, Poland. The tested samples were found in earth in the city centre under the present marketplace. The excavation works were carried out in summer in the year 2009, and have resulted in the excavation of artefacts in form of copper block of the weight of several kg. The excavation action was led by a group of Polish archaeologists collaborating with the local authorities. The performed pre-dating of this element determines the age of the artefacts as the 17th century AD. The excavations that have been taking place since 2007 have widened the knowledge of the former Czestochowa. Historians of this town have suggested, that the found weight and traces of metallurgical activity suggest that the exposed walls were an urban weight. The weight is visible on the 18th century iconography. What was find on the Old Market indicates that there was a lush economic life before the Swedish invasion in this part of Poland. Some buildings lost their functions or were changed, others died in fires, but new places developed. To describe the microstructure, with its structural components, research was done using microscopy techniques, both of the light as well as electron microscopy (SEM), also chemical composition analysis was carried out using the EDS technique, as well as tool for phase analysis were applied in form of X-Ray Diffraction (qualitative analysis), especially for the reason to describe the phases present in the excavated material. This research will help to obtain new information in order to investigate further archaeometallurgical artefacts, extending the knowledge about middle age metallic materials its usage and manufacturing.
Go to article

Abstract

The paper presents the impact of biodegradable material - polycaprolactone (PCL) on selected properties of moulding sands. A self-hardening moulding sands with phenol-furfuryl resin, which is widely used in foundry practice, and an environmentally friendly self-hardening moulding sand with hydrated sodium silicate where chosen for testing. The purpose of the new additive in the case of synthetic resin moulding sands is to reduce their harmfulness to the environment and to increase their “elasticity” at ambient temperature. In the case of moulding sands with environmentally friendly hydrated sodium silicate binder, the task of the new additive is to increase the elasticity of the tested samples while preserving their ecological character. Studies have shown that the use of 5% PCL in moulding sand increases their flexibility at ambient temperature, both with organic and inorganic binders. The influence of the new additive on the deformation of the moulding sands at elevated temperatures has also been demonstrated.
Go to article

Abstract

The multiple direct remelting of composites based on the A359 alloy reinforced with 20% of Al2O3 particles was performed. The results of both gravity casting and squeeze casting were examined in terms of the obtained microstructure and mechanical characteristics. In microstructure examinations, the combinatorial method based on phase quanta theory was used. In mechanical tests, the modified low cycle fatigue method (MLCF) was applied. The effects obtained after both gravity casting and squeeze casting were compared. It was noted that both characteristics were gradually deteriorating up to the tenth remelting. The main cause was the occurrence of shrinkage porosity after the gravity casting. Much better results were obtained applying the squeeze casting process. The results of microstructure examinations and fatigue tests enabled drawing the conclusion that the A359 alloy reinforced with Al2O3 particles can confer a much better fatigue life behavior to the resulting composite than the A359 alloy without the reinforcement. At the same time, comparing these results with the results of the previous own research carried out on the composites based also on the A359 alloy but reinforced in the whole volume with SiC particles, it has been concluded that both types of the composites can be subjected to multiple remelting without any significant deterioration of the structural and mechanical characteristics. The concepts and advantages of using the combinatorial and MLCF methods in materials research were also presented
Go to article

This page uses 'cookies'. Learn more