Search results

Filters

  • Journals

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

During the machining processes, heat gets generated as a result of plastic deformation of metal and friction along the tool–chip and tool–work piece interface. In materials having high thermal conductivity, like aluminium alloys, large amount of this heat is absorbed by the work piece. This results in the rise in the temperature of the work piece, which may lead to dimensional inaccuracies, surface damage and deformation. So, it is needed to control rise in the temperature of the work piece. This paper focuses on the measurement, analysis and prediction of work piece temperature rise during the dry end milling operation of Al 6063. The control factors used for experimentation were number of flutes, spindle speed, depth of cut and feed rate. The Taguchi method was employed for the planning of experimentation and L18 orthogonal array was selected. The temperature rise of the work piece was measured with the help of K-type thermocouple embedded in the work piece. Signal to noise (S/N) ratio analysis was carried out using the lower-the-better quality characteristics. Depth of cut was identified as the most significant factor affecting the work piece temperature rise, followed by spindle speed. Analysis of variance (ANOVA) was employed to find out the significant parameters affecting the work piece temperature rise. ANOVA results were found to be in line with the S/N ratio analysis. Regression analysis was used for developing empirical equation of temperature rise. The temperature rise of the work piece was calculated using the regression equation and was found to be in good agreement with the measured values. Finally, confirmation tests were carried out to verify the results obtained. From the confirmation test it was found that the Taguchi method is an effective method to determine optimised parameters for minimization of work piece temperature.
Go to article

Abstract

Zinc (II) removal using low-cost sorbents requires a proper process parametric study to determine its optimal performance characteristics. In this respect, the present study proposes a new modeling and simulation procedure for heavy metal removal system and is carried out to optimize input variables such as initial pH, adsorbent dosage, and contact time for biosorption of Zinc (II) by using bentonite. The proposed experimental system is cost-effective and requires less calculation for determining optimal values, i.e., input variables and their related removal capacity, Rem%. To optimize the adsorption process, cubic spline curve fitting and numerical differentiation techniques are used for required calculations. According to the proposed calculations, the removal capacity is calculated as 98.66%, while the optimal values are calculated as initial pH – 6.76, adsorbent dosage – 1.14 g L-1, contact time – 13 minutes. To evaluate the results, full factor experimental design and 3 way ANOVA test are used for comparison.
Go to article

Abstract

The wear behaviour of Cr3C2-25% NiCr laser alloyed nodular cast iron sample were analyzed using a pin-on-disc tribometer. The influence of sliding velocity, temperature and load on laser alloyed sample was focused and the microscopic images were used for metallurgical examination of the worn-out sites. Box-Behnken method was utilised to generate the mathematical model for the condition parameters. The Response Surface Methodology (RSM) based models are varied to analyse the process parameters interaction effects. Analysis of variance was used to analyse the developed model and the results showed that the laser alloyed sample leads to a minimum wear rate (0.6079×10–3 to 1.8570×10–3 mm3/m) and coefficient of friction (CoF) (0.43 to 0.53). From the test results, it was observed that the experimental results correlated well with the predicted results of the developed mathematical model.
Go to article

Abstract

The paper presents application of Taguchi method in optimizing the sound transmission loss through sandwich gypsum constructions and those comprising of masonry concrete blocks and gypsum boards in order to investigate the relative influence of the various parameters affecting the sound transmission loss. The application of Taguchi method for optimizing sound transmission loss has been rarely reported. The present work uses the results analytically predicted on “Insul” software for various sandwich material configurations as desired by each experimental run in an L8 orthogonal array. The relative importance of the parameters on single-number rating, Rw (C, Ctr) is evaluated in terms of percentage contribution using Analysis of Variance (ANOVA). The ANOVA method reveals that type of studs, steel stud frame and number of gypsum layers attached are the key factors controlling the sound transmission loss characteristics of sandwich multi-layered constructions.
Go to article

Abstract

In virtual acoustics or artificial reverberation, impulse responses can be split so that direct and reflected components of the sound field are reproduced via separate loudspeakers. The authors had investigated the perceptual effect of angular separation of those components in commonly used 5.0 and 7.0 multichannel systems, with one and three sound sources respectively (Kleczkowski et al., 2015, J. Audio Eng. Soc. 63, 428-443). In that work, each of the front channels of the 7.0 system was fed with only one sound source. In this work a similar experiment is reported, but with phantom sound sources between the front loud- speakers. The perceptual advantage of separation was found to be more consistent than in the condition of discrete sound sources. The results were analysed both for pooled listeners and in three groups, according to experience. The advantage of separation was the highest in the group of experienced listeners.
Go to article

This page uses 'cookies'. Learn more