Search results

Filters

  • Journals
  • Date

Search results

Number of results: 29
items per page: 25 50 75
Sort by:

Abstract

Magnesium alloys thanks to their high specific strength have an extensive potential of the use in a number of industrial applications. The most important of them is the automobile industry in particular. Here it is possible to use this group of materials for great numbers of parts from elements in the car interior (steering wheels, seats, etc.), through exterior parts (wheels particularly of sporting models), up to driving (engine blocks) and gearbox mechanisms themselves. But the use of these alloys in the engine structure has its limitations as these parts are highly thermally stressed. But the commonly used magnesium alloys show rather fast decrease of strength properties with growing temperature of stressing them. This work is aimed at studying this properties both of alloys commonly used (of the Mg-Al-Zn, Mn type), and of that ones used in industrial manufacture in a limited extent (Mg-Al-Sr). These thermomechanical properties are further on complemented with the microstructure analysis with the aim of checking the metallurgical interventions (an effect of inoculation). From the studied materials the test castings were made from which the test bars for the tensile test were subsequently prepared. This test took place within the temperature range of 20°C – 300°C. Achieved results are summarized in the concluding part of the contribution.
Go to article

Abstract

The results of experimental study of solid state joining of tungsten heavy alloy (THA) with AlMg3Mn alloy are presented. The aim of these investigations was to study the mechanism of joining two extremely different materials used for military applications. The continuous rotary friction welding method was used in the experiment. The parameters of friction welding process i.e. friction load and friction time in whole studies were changed in the range 10 to 30kN and 0,5 to 10s respectively while forging load and time were constant and equals 50kN and 5s. The results presented here concerns only a small part whole studies which were described elsewhere. These are focused on the mechanism of joining which can be adhesive or diffusion controlled. The experiment included macro- and microstructure observations which were supplemented with SEM investigations. The goal of the last one was to reveal the character of fracture surface after tensile test and to looking for anticipated diffusion of aluminum into THA matrix. The results showed that joining of THA with AlMg2Mn alloy has mainly adhesive character, although the diffusion cannot be excluded.
Go to article

Abstract

Lead-free alloys containing various amounts of zinc (4.5%, 9%, 13%) and constant copper addition (1%) were discussed. The results of microstructure examinations carried out by light microscopy (qualitative and quantitative) and by SEM were presented. In the light microscopy, a combinatorial method was used for the quantitative evaluation of microstructure. In general, this method is based on the phase quanta theory according to which every microstructure can be treated as an arrangement of phases/structural components in the matrix material. Based on this method, selected geometrical parameters of the alloy microstructure were determined. SEM examinations were based on chemical analyses carried out in microregions by EDS technique. The aim of the analyses was to identify the intermetallic phases/compounds occurring in the examined alloys. In fatigue testing, a modified low cycle fatigue test method (MLCF) was used. Its undeniable advantage is the fact that each time, using one sample only, several mechanical parameters can be estimated. As a result of structure examinations, the effect of alloying elements on the formation of intermetallic phases and compounds identified in the examined lead-free alloys was determined. In turn, the results of mechanical tests showed the effect of intermetallic phases identified in the examined alloys on their fatigue life. Some concepts and advantages of the use of the combinatorial and MLCF methods in materials research were also presented.
Go to article

Abstract

The results of examinations of the influence of titanium-boron inoculant on the solidification, the microstructure, and the mechanical properties of AlZn20 alloy are presented. The examinations were carried out for specimens cast both of the non-modified and the inoculated alloy. There were assessed changes in the alloy overcooling during the first stage of solidification due to the nuclei-forming influence of the inoculant. The results of quantitative metallographic measurements concerning the refinement of the grain structure of casting produced in sand moulds are presented. The cooling rate sensitivity of the alloy was proved by revealing changes in morphology of the α-phase primary crystals. Differences in mechanical properties resulting from the applied casting method and optional inoculation were evaluated.
Go to article

Abstract

Thermodynamic assessment of the phase stability of the solid solutions of superionic alloys of the Ag3SBr1-xClx(I) system in the concentration range 0 ≤ x ≤ 0.4 and temperature range 370–395 K was performed. Partial functions of silver in the alloys of solid solution were used as the thermodynamic parameters. The values of partial thermodynamic functions were obtained with the use of the electromotive force method. Potential-forming processes were performed in electrochemical cells. Linear dependence of the electromotive force of cells on temperature was used to calculate the partial thermodynamic functions of silver in the alloys. The serpentine-like shape of the thermodynamic functions in the concentration range 0–4 is an evidence of the metastable state of solid solution. The equilibrium phase state of the alloys is predicted to feature the formation of the intermediate phase Ag3SBr0.76Cl0.24, and the solubility gap of the solid solution ranges of Ag3SBr0.76Cl0.24and Ag3SBr.
Go to article

Abstract

Tungsten heavy alloys comprising tungsten, nickel and ferrous were modified, where molybdenum was added in varying weight proportions keeping the ratio of Ni: Fe (8:2) constant. The powders were mixed in a high-energy ball mill and were further fabricated using the spark plasma sintering (SPS) method at a peak temperature of 1000°C with heating rate of 100°C/min. The details of the microstructure and mechanical properties of these various alloy compositions were studied. With the increasing weight composition of the Mo in the alloy, the relative density of the alloy increased with a significant improvement in all the mechanical properties. The yield strength (YS), ultimate tensile strength (UTS) and hardness improved significantly with increase in the proportion of Mo; however, a reduction in elongation percentage was observed. The maximum strength of 1250 MPa UTS was observed in the alloy with a Mo proportion of 24%. The heavy alloy unmixed with Mo has shown distinct white and grey regions, where white (W) grain is due to tungsten and grey region is a combinatorial effect of Ni and Fe. Upon addition of Mo, the white and gray phase differences started to minimize resulting in deep gray and black ‘C’-phase structures because of homogenization of the alloy. The main fracture mode found during this investigation in the alloys was inter-granular mode.
Go to article

Abstract

The most important parameters which predetermine mechanical properties of a material in aspects of suitability for castings to machinery components are: tensile strength (Rm), elongation (A5, hardness (HB) and impact strength (KCV). Heat treatment of aluminum alloys is performed to increase mechanical properties of the alloys mainly. The paper comprises a testing work concerning effect of heat treatment process consisting of solution heat treatment and natural ageing on mechanical properties and structure of AlZn10Si7MgCu alloy moulded in metal moulds. Investigated alloy was melted in an electric resistance furnace. Run of crystallization was presented with use of thermal-derivative method (ATD). This method was also implemented to determination of heat treatment temperature ranges of the alloy. Performed investigations have enabled determination of heat treatment parameters’ range, which conditions suitable mechanical properties of the investigated alloy. Further investigations will be connected with determination of optimal parameters of T6 heat treatment of the investigated alloy and their effect on change of structure and mechanical/technological properties of the investigated alloy.
Go to article

Abstract

The subject of this study is the presentation of relation between the degree of structure fineness and ultrasonic wave damping coefficient for the high-zinc aluminium alloys represented in this study by the sand mould cast alloy Al - 20 wt% Zn (AlZn20). The studied alloy was refined with a modifying (Al,Zn)-Ti3 ternary master alloy, introducing Ti in the amount of 400 pm into metal. Based on the analysis of the initial and modified alloy macrostructure images and ultrasonic testing, it was found that the addition of (Al,Zn)-Ti3 master alloy, alongside a significant fragmentation of grains, does not reduce the coefficient of ultrasonic waves with a frequency of 1 MHz.
Go to article

Abstract

The results of studies of W-Ni-Co-Fe experimental alloy, with chemical composition assuring a possibility of producing Ni-based supersaturated solid solution are presented. The alloy was prepared from tungsten, nickel, cobalt and iron powders which were first mixed then melted in a ceramic crucible where they slowly solidified in hydrogen atmosphere. Next specimens were cut from the casting and heated at a temperature 950o C. After solution treatment the specimens were water quenched and then aged for 20 h at a temperature 300o C. The specimens were subjected to microhardness measurements and structure investigations. The latter included both conventional metallography and SEM observations. Moreover, for some specimens X-ray diffractometry studies and TEM investigations were conducted. It was concluded that quenching lead to an increase of tungsten concentration in nickel matrix which was confirmed by Ni lattice parameter increase. Aging of supersaturated solid solution caused strengthening of the Ni-based matrix, which was proved by hardness measurements. The TEM observation did not yield explicit proofs that the precipitation process could be responsible for strengthening of the alloy.
Go to article

Abstract

The paper presents relationships between the degree of structure fineness and feeding quality of the Al – 20 wt.% Zn (Al-20 Zn) alloy cast into a mould made from sand containing silica quartz as a matrix and bentonite as a binder, and its damping coefficient of the ultrasound wave at frequency of 1 MHz. The structure of the examined alloy was grain refined by the addition of the refining Al-3 wt.% Ti – 0.15 wt.%C (TiCAl) master alloy. The macrostructure analysis of the initial alloy without the addition of Ti and the alloy doped with 50-100 ppm Ti as well as results of damping experiments showed that the structure of the modified alloy is significantly refined. At the same time, its damping coefficient decreases by about 20-25%; however, it still belongs to the so called high-damping alloys. Additionally, it was found that despite of using high purity metals Al and Zn (minimum 99,99% purity), differences in the damping coefficient for samples cut from upper and bottom parts of the vertically cast rolls were observed. These differences are connected with the insufficient feeding process leading to shrinkage porosity as well as gases present in metal charges which are responsible for bubbles of gas-porosity.
Go to article

Abstract

Dispersion hardening, as the main heat treatment of silumins having additions of copper and magnesium, results in considerable increase of tensile strength and hardness, with simultaneous decrease of ductility of the alloy. In the paper is presented an attempt of introduction of heat treatment operation consisting in homogenizing treatment prior operation of the dispersion hardening, to minimize negative effects of the T6 heat treatment on plastic properties of hypereutectoidal AlSi17CuNiMg alloy. Tests of the mechanical properties were performed on a test pieces poured in standardized metal moulds. Parameters of different variants of the heat treatment, i.e. temperature and time of soaking for individual operations were selected basing on the ATD (Thermal Derivation Analysis) diagram and analysis of literature. The homogenizing treatment significantly improves ductility of the alloy, resulting in a threefold increase of the elongation and more than fourfold increase of the impact strength in comparison with initial state of the alloy. Moreover, the hardness and the tensile strength (Rm) of the alloy decrease considerably. On the other hand, combination of the homogenizing and dispersion hardening enables increase of elongation with about 40%, and increase of the impact strength with about 25%, comparing with these values after the T6 treatment, maintaining high hardness and slight increase of the tensile strength, comparing with the alloy after the dispersion hardening
Go to article

Abstract

Magnesium alloys are one of the lightest of all the structural materials. Because of their excellent physical and mechanical properties the alloys have been used more and more often in various branches of industry. They are cast mainly (over 90%) on cold and hot chamber die casting machines. One of the byproducts of casting processes is process scrap which amounts to about 40 to 60% of the total weight of a casting. The process scrap incorporates all the elements of gating systems and fault castings. Proper management of the process scrap is one of the necessities in term of economic and environmental aspects. Most foundries use the process scrap, which involves adding it to a melting furnace, in a haphazard way, without any control of its content in the melt. It can lead to many disadvantageous effects, e.g. the formation of a hard buildup at the bottom of the crucible, which in time makes casting impossible due to the loss of the alloy rheological properties. The research was undertaken to determine the effect of an addition of the process scrap on the mechanical properties of AZ91 and AM50 alloys. It has been ascertained that the addition of a specific amount of process scrap to the melt increases the mechanical properties of the elements cast from AZ91 and AM50 alloys. The increase in the mechanical properties is caused mainly by compounds which can work as nuclei of crystallization and are introduced into the scrap from lubricants and anti-adhesive agents. Furthermore carbon, which was detected in the process scrap by means of SEM examination, is a potent grain modifier in Mg alloys [1-3]. The optimal addition of the process scrap to the melt was determined based on the statistical analysis of the results of studies of the effect of different process scrap additions on the mean grain size and mechanical properties of the cast parts.
Go to article

Abstract

The paper present the examination results concerning mechanical properties of castings made of AlSi7MG alloy in correlation both with the most significant squeeze casting parameters and with the modification treatment. Experiments were planned and held according to the 2 3 factorial design. The regression equations describing the influence of the squeeze pressure, the mould temperature, and the quantity of strontium modifier on the strength and elongation of the examined alloy were obtained. It was found that the main factor controlling the strength increase is the squeeze pressure, while the plasticity (A5 ) of the alloy is affected most advantageously by modification. The application of modification treatment in squeeze casting technology enables for production of the slab-type castings made of AlSi7Mg alloy exhibiting strength at the level of 230 MPa and elongation exceeding 14%.
Go to article

Abstract

An intentional change in material properties is an important condition for castings production. It is one way how to meet the casting requirements of how to adapt the material properties to the operating conditions. Centrifugally cast rolls are multi-layer rollers, castings. The working layer of the barrel is called the "shell" and the body of the roll and the necks rolls are called "core". The article deals with the influence of the properties of the core iron. Earlier laboratory experiments were primary analysed for metallographic analysis and mechanical properties. These data were compared back to the experiments. The results of these laboratory working were later applied in the operating conditions of the roll foundry Vítkovitcké slévárny, spol. s r.o. The spun cast roll produced with the applied metallurgical processing change was supplied to the hot strip mill. There were monitored the positive effect of the change of the metallurgical process of the production of the core iron on the useful properties of the centrifugally cast roll. The experiment was done in order to increase the mechanical properties of ductile pearlite ductile iron. The copper in these core iron material increases the hardness and strength primarily.
Go to article

Abstract

The study presents the results of the application of a statistical analysis for the evaluation of the effect of high-melting additions introduced into a pressure cast Al-Si alloy on the obtained level of its proof stress Rp0.2. The base Al-Si alloy used for the tests was a typical alloy used for pressure casting grade EN AC-46000. The base alloy was enriched with high-melting additions, such as: Cr, Mo, V and W. The additions were introduced into the base Al-Si alloy in all the possible combinations. The content of the particular high-melting addition in the Al-Si alloy was within the scope of 0.05 to 0.50%. The investigations were performed on both the base alloy and alloy with the high-melting element additions. Within the implementation of the studies, the values of Rp0.2 were determined for all the considered chemical compositions of the Al-Si alloy. A database was created for the statistical analysis, containing the independent variables (chemical composition data) and dependent variables (examined Rp0.2 values). The performed statistical analysis aimed at determining whether the examined high-melting additions had a significant effect on the level of Rp0.2 of the Al-Si alloy as well as optimizing their contents in order to obtain the highest values of the Al-Si alloy's proof stress Rp0.2. The analyses showed that each considered high-melting addition introduced into the Al-Si alloy in a proper amount can cause an increase of the proof stress Rp0.2 of the alloy, and the optimal content of each examined high-melting addition in respect of the highest obtained value of Rp0.2 equals 0.05%.
Go to article

Abstract

The aim of this publication is to present practical application of the R. Kolman’s quality rating method used in the evaluation of aluminium alloys. The results of studies of the mechanical and physical properties of the three selected test materials are discussed. To find the best material, the quality level of each of the tested materials was assessed using quality ratings proposed by R. Kolman. The results of the conducted analysis have proved that the best material was an AKII MM alloy, i.e. a casting AK11 aluminium alloy from the 4XXX series.
Go to article

Abstract

The effect of plastic deformation process on the dissolution rate of biocompatible Mg alloys was investigated. Two biocompatible MgLi1Ca0,2Zn1 and MgLi1Ca1Zn1 alloys were selected for the study. The alloys were deformed on a 100T press at a temperature of 350°C by conventional extrusion and by the equal channel angular extrusion process (ECAE). The grain size analysis showed a high degree of the grain refinement from approximately 110 mm in the initial state to 2.8 mm after the 3rd pass of the ECAE process. Compared to as-cast state, the degree of strengthening has increased after plastic forming. The results of biodegradation tests have shown a significant increase in corrosion rate after both conventional extrusion and ECAE, although after subsequent ECAE passes, this rate was observed to slightly decrease in the MgLi1Ca1Zn1 alloy. Based on the results of macro- and microstructure examinations, the corrosion progress in samples after the extrusion process was described.
Go to article

Abstract

In the dissertation it has been shown, that so called „time-thermal treatment” (TTT) of the alloy in liquid state, as overheating the metal with around 250o C above the Tliq. and detaining it in this temperature for around 30 minutes, improves the mechanical properties (HB, Rm, R0,2). It was ascertained, that overheating the AlSi17Cu5Mg alloy aids the modification, resulting with microcrystalline structure. Uniform arrangement of the Si primeval crystals in the warp, and α(Al) solution type, supersaturated with alloying elements present in the base content (Cu, Mg) assures not only increased durability in the ambient temperature, but also at elevated temperature (250o C), what is an advantage, especially due to the use in car industry.
Go to article

Abstract

The paper presents tribological properties of A390.0 (AlSi17Cu5Mg) alloy coupled in abrasive action with EN-GJL-350 grey cast-iron. The silumin was prepared with the use of two different technologies which differed in terms of cooling speed. In the first case the alloy was modified with foundry alloy CuP10 and cast to a standard tester ATD and in case of second option the modified alloy was cast into steel casting die. Due to different speed of heat removal the silumins varied in structure, particularly with size of primary crystals of silicon and their distribution in matrix which had a significant influence of friction coefficient in conditions of dry friction.
Go to article

Abstract

The paper presents the results of studies on the effect of the AlSi17Cu5 alloy overheating to atemperature of 920°C and modification with phosphorus (CuP10) on the resultingmechanical (HB, Rm, R0.2) and plastic (A5 and Z) properties. It has been shown that, so-called, "timethermal treatment" (TTT) of an alloy in the liquid state, consisting inoverheating the metal to about 250°C above Tliq,holding at this temperature by 30 minutes improvesthe mechanical properties. It has also been found that overheating of alloy above Tliq.enhances the process of modification, resulting in the formation of fine-grain structure. The primary silicon crystals uniformly distributed in the eutectic and characteristics ofthe α(Al) solution supersaturated with alloying elements present in the starting alloy composition (Cu, Fe) provide not only an increase of strength at ambient temperature but also at elevated temperature (250°C).
Go to article

Abstract

In the article we were studing the impact of the remelting on transformations in Co-Cr-Mo prosthetics alloy. The TDA curves were analyzed, the microstructure was examined, the analysis of the chemical composition and hardness using the Brinell method was made. It was found that the obtained microstructure of the alloys that we studied do not differ significantly. In all four samples, microscopic images were similar to each other. The volume, size and distribution of the phases remain similar. Analysis of the chemical composition showed that all the samples fall within the compositions provided for the test alloy. Further to this the hardness of the samples, regardless of the number of remeltings did not show any significant fluctuations and remained within the error limit.After analyzing all the results, it can be concluded that the remeltings of the alloys should not have a significant impact on their properties. Secondarily melted alloys can be used for prosthetics works.
Go to article

Abstract

Silicon bronzes are characterised by good mechanical properties and by high corrosion and mechanical wear resistance. The process of sleeve casting by means of the centrifugal casting with the horizontal axis of the mould rotation was analysed. The assessment of the influence of modification and centrifugal casting parameters on the microstructure and mechanical properties of alloys was carried out in the hereby work. Zirconium was applied as a modifier. Speed of rotation of the mould was the variable parameter of the centrifugal casting. The investigation results were summarised on the basis of the microstructure analysis and mechanical properties determination: UTS, proof stress, A10 and BHN. The experiment aimed at finding the information in which way the modification together with changing the pouring parameters influence the mechanical properties of the CuSi3Zn3FeMn alloy.
Go to article

Abstract

Currently there is a constant development in the field of aluminium alloys engineering. This results from, i.a., better understanding of the mechanisms that direct strengthening of these alloys and the role of microalloying. Now it is microalloying in aluminum alloys that is receiving a lot of attention. It affects substantially the macro- and microstructure and kinetics of phase transformation influencing the properties during production and its exploitation. 7xxx series aluminum alloys, based on the Al-Zn-Mg-Cu system, are high-strength alloys, moreover, the presence of Zr and Sr further increases their strength and improves resistance to cracking. This study aims to present the changes of the properties, depending on the alloy chemical composition and the macro- and microstructure. Therefore, the characteristics in the field of hardness, tensile strength, yield strength and elongation are shown on selected examples. Observations were made on ingot samples obtained by semi-continuous casting, in the homogenized state. Samples were prepared from aluminum alloys in accordance with PN-EN 573-3: 2013. The advantage of Al-Zn-Mg-Cu alloys are undoubtedly good strength, Light-weight and resistance to corrosion. As widening of the already published studies it is sought to demonstrate the repeatability of the physical parameters in the whole volume of the sample.
Go to article

Abstract

The paper presents the results of the application of a statistical analysis to evaluate the effect of the chemical composition of the die casting Al-Si alloys on its basic mechanical properties. The examinations were performed on the hypoeutectic Al-Si alloy type EN AC-46000 and, created on its basis, a multi-component Al-Si alloy containing high-melting additions Cr, Mo, W and V. The additions were introduced into the base Al-Si alloy in different combinations and amounts (from 0,05% to 0,50%). The tensile strength Rm; the proof stress Rp0,2; the unit elongation A and the hardness HB of the examined Al-Si alloys were determined. The data analysis and the selection of Al-Si alloy samples without the Cr, Mo, W and V additions were presented; a database containing the independent variables (Al-Si alloy's chemical composition) and dependent variables (Rm; Rp0,2; A and HB) for all the considered variants of Al-Si alloy composition was constructed. Additionally, an analysis was made of the effect of the Al-Si alloy's component elements on the obtained mechanical properties, with a special consideration of the high-melting additions Cr, Mo, V and W. For the optimization of the content of these additions in the Al-Si alloy, the dependent variables were standardized and treated jointly. The statistical tools were mainly the multivariate backward stepwise regression and linear correlation analysis and the analysis of variance ANOVA. The statistical analysis showed that the most advantageous effect on the jointly treated mechanical properties is obtained with the amount of the Cr, Mo, V and W additions of 0,05 to 0,10%.
Go to article

This page uses 'cookies'. Learn more