Search results

Filters

  • Journals
  • Date

Search results

Number of results: 22
items per page: 25 50 75
Sort by:

Abstract

Main aim of submitted work is evaluation and experimental verification of inoculation effect on Al alloys hot-tear sensitivity. Submitted work consists of two parts. The first part introduces the reader to the hot tearing in general and provides theoretical analysis of hot tearing phenomenon. The second part describes strontium effect on hot tearing susceptibility, and gives the results on hot tearing for various aluminium alloys. During the test, the effect of alloy chemical composition on hot tearing susceptibility was also analyzed. Two different Al-based alloys were examined. Conclusions deals with effect of strontium on hot tearing susceptibility and confirms that main objective was achieved.
Go to article

Abstract

This paper presents a study of the effect of the modification and cooling rate on the grain count α(Al) in the Al-5Cu alloy. Research was performed on castings with walls thickness between 3 mm and 25 mm. Cooling curves were recorded to determine the cooling rate and the degree of undercooling at the beginning of solidification. It has been shown that cooling rate increases exponentially as the wall thickness of casting decreases. Moreover it has been demonstrated that the cooling rate of castings changes within a wide range (21ºC/s - 1ºC/s) when the wall thickness changes from 3 up to 25 mm. Metallographic examinations revealed primary grains (primary α(Al) grains). The paper show that the relationship between the grain count and the degree of undercooling (for non-modified and modified alloys) can be represented by the equation N = Nv = np·exp(-b/ΔTα), based on the Weibull's distribution of the size of nucleation sites.
Go to article

Abstract

The presented work discusses the influence of material of foundry mould on the effect of modification of AlSi11 alloy. For this purpose castings were produced in moulds made of four various materials. Castings of the first type were cast in a metal die, the second ones in the conventional mould of bentonite-bound sand, those of the third type in the sand mould with oil binder, the last ones in a shell mould where phenol-formaldehyde resin was applied as a binder. All the castings were made of AlSi11 alloy modified with strontium. For a purpose of comparison also castings made of the non-modified alloy were produced. The castings were examined with regard to their microstructures. The performed investigations point out that the addition of strontium master alloy results in refining of the alloy structure, particularly of the α-phase, causes some morphological changes in the alloy and the refinement of eutectics. The advantageous influence of modifier on the structure of the examined silumin was observed particularly in the case of alloy cast either in the conventional oil-bound sand mould or in the shell mould. The non-modified alloy cast into a metal die exhibits a structure similar to those of modified alloy solidifying in the other moulds. The improvement in both tensile strength and unit elongation suggests that the modification was carried out correctly. The best mechanical properties were found for the alloy cast in a metal die, both with and without modification treatment.
Go to article

Abstract

The results of examinations of the influence of titanium-boron inoculant on the solidification, the microstructure, and the mechanical properties of AlZn20 alloy are presented. The examinations were carried out for specimens cast both of the non-modified and the inoculated alloy. There were assessed changes in the alloy overcooling during the first stage of solidification due to the nuclei-forming influence of the inoculant. The results of quantitative metallographic measurements concerning the refinement of the grain structure of casting produced in sand moulds are presented. The cooling rate sensitivity of the alloy was proved by revealing changes in morphology of the α-phase primary crystals. Differences in mechanical properties resulting from the applied casting method and optional inoculation were evaluated.
Go to article

Abstract

Pouring of liquid aluminium is typically accompanied by disturbance of the free surface. During these disturbances, the free surface oxide films can be entrained in the bulk of liquid, also pockets of air can be accidentally trapped in this oxide films. The resultant scattering of porosity in castings seems nearly always to originate from the pockets of entrained air in oxide films. Latest version of ProCast software allows to identify the amount of oxides formed at the free surface and where they are most likely to end-up in casts. During a filling calculation, ProCast can calculate different indicators which allow to better quantify the filling pattern. The fluid front tracking indicator “ Free surface time exposure” has the units [cm2*s]. At each point of the free surface, the free surface area is multiplied by the time. This value is cumulated with the value of the previous timestep. In addition, this value is transported with the free surface and with the fluid flow.Experiments to validate this new functions were executed.
Go to article

Abstract

In the aluminium alloy family, Al-Zn materials with non-standard chemical composition containing Mg and Cu are a new group of alloys, mainly owing to their high strength properties. Proper choice of alloying elements, and of the method of molten metal treatment and casting enable further shaping of the properties. One of the modern methods to produce materials with submicron structure is a method of Rapid Solidification. The ribbon cast in a melt spinning device is an intermediate product for further plastic working. Using the technique of Rapid Solidification it is not possible to directly produce a solid structural material of the required shape and length. Therefore, the ribbon of an ultrafine grain or nanometric structure must be subjected to the operations of fragmentation, compaction, consolidation and hot extrusion. In this article the authors focussed their attention on the technological aspect of the above mentioned process and described successive stages of the fabrication of an AlZn9Mg2.5Cu1.8 alloy of ultrafine grain structure designated for further plastic working, which enables making extruded rods or elements shaped by the die forging technology. Studies described in the article were performed under variable parameters determined experimentally in the course of the alloy manufacturing process, including casting by RS and subsequent fragmentation.
Go to article

Abstract

At thermal junctions of aluminium alloy castings and at points where risering proves to be difficult there appear internal or external shrinkages, which are both functionally and aesthetically inadmissible. Applying the Probat Fluss Mikro 100 agent, which is based on nano-oxides of aluminium, results in the appearance of a large amount of fine microscopic pores, which compensate for the shrinking of metal. Experimental tests with gravity die casting of AlSi8Cu3 and AlSi10Mg alloys have confirmed that the effect of the agent can be of advantage in foundry practice, leading to the production of castings without local concentrations of defects and without the appearance of shrinkages and macroscopic gas pores. Also, beneficial effect on the mechanical properties of the metal has been observed.
Go to article

Abstract

The subject of the paper is structural stability of the Zn-26 wt.% Al binary alloys doped with 2.2 wt.% Cu or 1.6 wt.% Ti addition. The structural stability of Zn-Al alloys with increased Al content is connected with stability of solid solution of zinc in aluminium α', which is the main component of these alloys microstructure. Such a solution undergoes phase transformations which are accompanied, among others, by changes in dimensions and strength properties. The structural stability of the ZnAL26Cu2.2 and ZnAl26Ti1.6 alloys was investigated using XRD examinations during long term natural ageing after casting, as well as during long term natural ageing after super-saturation and quenching. On the basis of the performed examinations it was stated that small Ti addition to the binary ZnAl25 alloy, apart from structure refinement, accelerates decomposition of the primary α' phase giving stable structure in a shorter period of time in comparison with the alloy without Ti addition. Addition of Ti in amount of 1.6 wt.%, totally replacing Cu, allows obtaining stable structure and dimensions and allows avoiding structural instability caused by the metastable ε−CuZn4 phase present in the ZnAl26Cu2.2 alloy.
Go to article

Abstract

The paper is devoted to grain-refinement of the medium-aluminium zinc based alloys (MAl-Zn). The system examined was sand cast Zn10 wt. %. Al binary alloy (Zn-10Al) doped with commercial Al-3 wt. % Ti – 0.15 wt. % C grain refiner (Al-3Ti-0.15C GR). Basing on the measured attenuation coefficient of ultrasonic wave it was stated that together with significantly increased structure fineness damping decreases only by about 10 – 20%. The following examinations should establish the influence of the mentioned grain-refinement on strength and ductility of MAl-Zn cast alloys.
Go to article

Abstract

The paper presents relationships between the degree of structure fineness and feeding quality of the Al – 20 wt.% Zn (Al-20 Zn) alloy cast into a mould made from sand containing silica quartz as a matrix and bentonite as a binder, and its damping coefficient of the ultrasound wave at frequency of 1 MHz. The structure of the examined alloy was grain refined by the addition of the refining Al-3 wt.% Ti – 0.15 wt.%C (TiCAl) master alloy. The macrostructure analysis of the initial alloy without the addition of Ti and the alloy doped with 50-100 ppm Ti as well as results of damping experiments showed that the structure of the modified alloy is significantly refined. At the same time, its damping coefficient decreases by about 20-25%; however, it still belongs to the so called high-damping alloys. Additionally, it was found that despite of using high purity metals Al and Zn (minimum 99,99% purity), differences in the damping coefficient for samples cut from upper and bottom parts of the vertically cast rolls were observed. These differences are connected with the insufficient feeding process leading to shrinkage porosity as well as gases present in metal charges which are responsible for bubbles of gas-porosity.
Go to article

Abstract

This paper deals with the evaluation of the corrosion resistance of the Al-Si alloys alloyed with the different amount of antimony. Specifically it goes about the alloy AlSi7Mg0,3 which is antimony alloyed in the concentrations 0; 0,001; 0,005; 0,01 a 0,05 wt. % of antimony. The introduction of the paper is dedicated to the theory of the aluminium alloys corrosion resistance, testing and evaluation of the corrosion resistance. The influence of the antimony to the Al-Si alloys properties is described further in the introduction. The experimental part describes the experimental samples which were prepared for the experiment and further they were exposed to the loading in the atmospheric conditions for a period of the 3 months. The experimental samples were evaluated macroscopically and microscopically. The results of the experiment were documented and the conclusions in terms of the antimony impact to the corrosion resistance of the Al-Si alloy were concluded. There was compared the corrosion resistance of the Al-Si alloy antimony alloyed (with the different antimony content) with the results of the Al-Si alloy without the alloying after the corrosion load in the atmospheric conditions in the experiment.
Go to article

Abstract

The paper presents research on the effects of soft annealing parameters on a change of the impact strength KC and Brinell hardness (HB) of the EN AC-AlSi11 alloy. The research has been performed according to the trivalent testing plan for two input parameters – temperature in the range between 280°C and 370°C and time in the range between 2 and 8 hours. The application of such heat treatment improves the plasticity of the investigated alloy. The improvement of the impact strength KC by 71% and the decrease of the hardness HB by 20% was achieved for the soft annealing treatment conducted at a temperature 370°C for 8 hours, compared to the alloy without the heat treatment. A change of the form of eutectic silicon precipitations which underwent refinement, coagulation and partial rounding, had a direct effect on the hardness HB and impact strength KC. The results obtained were used to prepare space plots enabling the temperature and time for soft annealing treatment to be selected with reference to the obtained impact strength KC and hardness HB of the alloy with the heat treatment.
Go to article

Abstract

Presented in this paper are results of an experimental investigation on the rivet flexibility and load transmission in a riveted lap joint representative for the aircraft fuselage. The test specimens consisted of two aluminium alloy Alclad sheets joined with 3 rows of rivets. Two different squeeze forces were applied to install the rivets. Rivet flexibility measurements have been performed under constant amplitude fatigue loading using several methods including two original optical techniques developed by the present authors. The axial tractions in the sheets required to determine the rivet flexibility have been derived from strain gauge measurements. In order to eliminate the effect of secondary bending the strain gauges have been bonded at the same locations on the outside and faying surface of the sheet. The experiments enabled an evaluation of the usefulness of various techniques to determine the rivet flexibility. It was observed that, although the measured flexibility was identical for both end rivet rows, the load transfer through either of these rows was different. Previous experimental results by the present authors suggest that behind the non-symmetrical load transfer distribution through the joint are large differences between the rivet hole expansion in the sheet adjacent to the driven rivet head and the sheet under the manufactured head [1]. It has been concluded that commonly used computation procedures according to which the load transfer is only related to the rivet flexibility may lead to erroneous results.
Go to article

Abstract

Aluminium metal matrix composites (AMMCs) are the fastest developing materials for structural applications. Friction Stir Processing (FSP) has evolved as a promising surface composite fabrication technique mainly because it is an eco-friendly and solid-state process. A spurt in the interest of research community and a resulting huge research output makes it difficult to find relevant information to further the research with objectivity. To facilitate this, the present article addresses the current state of the art and development in surface metal matrix fabrication through FSP with a specific focus on ex-situ routes. The available literature has been carefully read and categorized to present effects of particle size, morphology and elemental composition. The effect of various reinforcements on development of different functional characteristics is also discussed. Effect of main FSP parameters on various responses is presented with objectivity. Based on the studied literature concluding summary is presented in a manner in which the literature becomes useful to the researchers working on this important technology.
Go to article

Abstract

Twist extrusion is a processing method involving the extrusion of a sample with a prismatic cross-section using a tool composed of four prismatic parts bisected by a screw component. A beneficial change in mechanical durability is one of the main factors enabling the use of highly durable Al-Mg-Mn-Sc-Zr alloys to construct functional components of non-stationary robots. As part of the present research, ANSYS® software was used to simulate a twist extrusion process. An analysis of a sample entering and passing through the entire twisting area was performed, up to the point of full twisting of the base of the sample. The stress conditions in the sample were analysed as it passed through the twisting area. The highest stress values (reaching up to 600 MPa) were detected at the tips of the sample face as the sample exited the twisting area. The lowest stress values, at around 170 MPa, were detected at the side edges of the sample.
Go to article

Abstract

The paper presents data concerning the total production of castings over the 2000-2014 period, both on a global scale, and in Poland. The basic types of casting alloys were taken into account. Changes in the production volume and structure over the period of the analysed 15 years were pointed out with respect to countries leading in foundry production. The topmost position in the world foundry industry is held by China for several years (with almost 45% share in the foundry market), the second place is taken by India (with almost 9% share). A distinct reduction in the shares of the once significant producers of castings, such as USA, Japan, Germany, Russia, Italy, or France, was observed over the 2000-2014 period. Poland had a share of 1.16% in 2000, and of 1.02% in 2014. Comparing the detailed data concerning the years 2000 and 2014, one can see that the fractions of castings made of ductile iron, cast steel, aluminium alloys, or magnesium alloys increase on a global scale, while such alloys as grey cast iron or malleable are in decline.
Go to article

Abstract

The study presents the results of the investigations of the effect of Cu, Ni, Cr, V, Mo and W alloy additions on the microstructure and mechanical properties of the AlSi7Mg0.3 alloy. The examinations were performed within a project the aim of which is to elaborate an experimental and industrial technology of producing elements of machines and devices complex in their construction, made of aluminium alloys by the method of precision investment casting. It was demonstrated that a proper combination of alloy additions causes the crystallization of complex intermetallic phases in the silumin, shortens the SDAS and improves the strength properties: Rm, Rp0.2,HB hardness. Elevating these properties reduces At, which, in consequence, lowers the quality index Q of the alloy of the obtained casts. Experimental casts were made in ceramic moulds preliminarily heated to 160 °C, into which the AlSi7Mg0.3 alloy with the additions was cast, followed by its cooling at ambient temperature. With the purpose of increasing the value of the quality index Q, it is recommended that the process of alloy cooling in the ceramic mould be intensified and/or a thermal treatment of the casts be performed (ageing)(T6).
Go to article

Abstract

The paper gives an introduction to nanostructuring techniques used for industrial fabrication of bulk nanocrystalline metals – basic materials utilized in shaping nanoscale structures. Nanostructured metals, called nanometals, can be produced by severe plastic deformation (SPD). We give an expert coverage of current achievements in all important SPD methods and present future industry developments and research directions including both batch and continuous processes. In the laboratories of both WUT and UOS we have developed industry standard equipment and machinery for nanometals processing. Utilizing the latest examples from our research, we provide a concise introduction to the field of mass production of nanometals for nanotechnology.
Go to article

Abstract

The aim of this publication is to present practical application of the R. Kolman’s quality rating method used in the evaluation of aluminium alloys. The results of studies of the mechanical and physical properties of the three selected test materials are discussed. To find the best material, the quality level of each of the tested materials was assessed using quality ratings proposed by R. Kolman. The results of the conducted analysis have proved that the best material was an AKII MM alloy, i.e. a casting AK11 aluminium alloy from the 4XXX series.
Go to article

Abstract

The paper presents the results of investigations concerning the influence of negative (relative) pressure in the die cavity of high pressure die casting machine on the porosity of castings made of AlSi9Cu3 alloy. Examinations were carried out for the VertaCast cold chamber vertical pressure die casting machine equipped with a vacuum system. Experiments were performed for three values of the applied gauge pressure: -0.3 bar, -0.5 bar, and -0.7 bar, at constant values of other technological parameters, selected during the formerly carried initial experiments. Porosity of castings was assessed on the basis of microstructure observation and the density measurements performed by the method of hydrostatic weighing. The performed investigation allowed to find out that – for the examined pressure range – the porosity of castings decreases linearly with an increase in the absolute value of negative pressure applied to the die cavity. The negative pressure value of -0.7 bar allows to produce castings exhibiting porosity value less than 1%. Large blowholes arisen probably by occlusion of gaseous phase during the injection of metal into the die cavity, were found in castings produced at the negative pressure value of -0.3 bar. These blowholes are placed mostly in regions of local thermal centres and often accompanied by the discontinuities in the form of interdendritic shrinkage micro-porosity. It was concluded that the high quality AlSi9Cu3 alloy castings able to work in elevated temperatures can be achieved for the absolute value of the negative pressure applied to the die cavity greater than 0.5 bar at the applied set of other parameters of pressure die casting machine work.
Go to article

Abstract

The presented work is aimed to deal with the influence of changes in the value of negative (relative) pressure maintained in the die cavity of pressure die casting machine on the surface quality of pressure castings. The examinations were held by means of the modified Vertacast pressure die casting machine equipped with a vacuum system. Castings were produced for the parameters selected on the basis of previous experiments, i.e. for the plunger velocity in the second stage of injection at the level of 4 m/s, the pouring temperature of the alloy equal to 640°C, and the die temperature of 150°C. The examinations were carried on for three selected values of negative gauge pressure: - 0.03, - 0.05, and - 0.07 MPa. The quality of casting was evaluated by comparing the results of the surface roughness measurements performed for randomly selected castings. The surface roughness was measured by means of Hommel Tester T1000. After a series of measurements it was found that the smoothest surface is exhibited by castings produced at negative gauge pressure value of - 0.07 MPa.
Go to article

This page uses 'cookies'. Learn more