Search results

Filters

  • Journals
  • Date

Search results

Number of results: 7
items per page: 25 50 75
Sort by:

Abstract

The article presents research results performed on aluminum bronze CuAl10Fe5Ni5 (BA1055) castings used for marine propellers. Metallographic studies were made on light microscope and a scanning electron microscope to assess quantitatively and qualitatively the alloy microstructure. It has been shown that the shape, size and distribution of the iron-rich κ−phase precipitates in bronze microstructure significantly affect its mechanical properties. With an increase in the number of small κ−phase precipitates increases the tensile strength of castings, while the presence of large globular precipitates improves ductility. Fragmentation and shape of κ−phase precipitates depends on many factors, particularly on the chemical composition of the alloy, Fe/Ni ratio, cooling rate and casting technology.
Go to article

Abstract

Among the copper based alloys, Cu-Al-X bronzes are commonly used as mold materials due to their superior physical and chemical properties. Mold materials suffer from both wear and corrosion, thus, it is necessary to know which one of the competitive phenomenon is dominant during the service conditions. In this study, tribo-corrosion behavior of CuAl10Ni5Fe4 and CuAl14Fe4Mn2Co alloys were studied and electrochemical measurements were carried out using three electrode system in 3.5 % NaCl solution in order to evaluate their corrosion resistance. In tribo-corrosion tests, alloys were tested against zirconia ball in 3.5 % NaCl solution, under 10N load with 0.04 m/s sliding speed during 300 and 600 m. The results indicate that (i) CuAl10Ni5Fe4 alloy is more resistant to NaCl solution compared to CuAl14Fe4Mn2Co alloy that has major galvanic cells within its matrix, (ii) although CuAl10Ni5Fe4 alloy has lower coefficient of friction value, it suffers from wear under dry sliding conditions, (iii) as the sliding distance increases, corrosion products on CuAl14Fe4Mn2Co surface increase at a higher rate compared to CuAl10Ni5Fe4 leading to a decrease in volume loss due to the lubricant effect of copper oxides.
Go to article

Abstract

Metallographic investigations and a computer simulation of stresses in a gravity die-casting bushing were performed. Simulation of the casting process, solidification of the thick-walled bushing and calculations of the stress was performed using MAGMA5.3 software. The size variability of phases κIIaffecting the formation of phase stresses σf, depending on the location of the metallographic test area, was identified. The distribution of thermal σtand shrinkage stresses σs, depending on the location of the control point SC in the bushing's volume, was estimated. Probably the nature of these stresses will change slightly even after machining. This can cause variations in operating characteristics (friction coefficient, wear). Due to the strong inhomogeneity of the stress distribution in the bushing's casting, it is necessary to perform further tests of the possibility to conduct thermal treatment guaranteeing homogenization of the internal stresses in the casting, as well as to introduce changes in the bushing's construction and the casting technology. The paper presents the continuation of the results of research aimed at identifying the causes of defects in the thick-walled bushing, die-casting made of CuAl10Fe5Ni5Cr aluminium bronze.
Go to article

Abstract

With the increase in wall thickness of the casting of iron-nickel-aluminium-bronze, by the reduction of the cooling rate the size of κII phase precipitates increases. This process, in the case of complex aluminium bronzes with additions of Cr, Mo and W is increased. Crystallization of big κII phase, during slow cooling of the casting, reduces the concentration of additives introduced to the bronze matrix and hardness. Undertaken research to develop technology of thick-walled products (g> 6 mm) of complex aluminium bronzes. Particular attention was paid to the metallurgy of granules. As a result, a large cooling speed of the alloy, and also high-speed solidification casting a light weight of the granules allows: to avoid micro-and macrosegregation, decreasing the particle size, increase the dispersion of phases in multiphase alloys. Depending on the size granules as possible is to provide finished products with a wall thickness greater than 6 mm by infiltration of liquid alloy of granules (composites). Preliminary studies was conducted using drip method granulate of CuAl10Fe5Ni5 bronze melted in a INDUTHERM-VC 500 D Vacuum Pressure Casting Machine. This bronze is a starting alloy for the preparation of the complex aluminium bronzes with additions of Cr, Mo, W and C or Si. Optimizations of granulation process was carried out. As the process control parameters taken a casting temperature t (°C) and the path h (mm) of free-fall of the metal droplets in the surrounding atmosphere before it is intensively cooled in a container of water. The granulate was subjected to a sieve analysis. For the objective function was assume maximize of the product of Um*n, the percentage weight "Um" and the quantity of granules 'n' in the mesh fraction. The maximum value of the ratio obtained for mesh fraction a sieve with a mesh aperture of 6.3 mm. In the intensively cooled granule of bronze was identified microstructure composed of phases: β and fine bainite (α+β'+β'1) and a small quantity of small precipitates κII phase. Get high microhardness bronze at the level of 323±27,9 HV0,1.
Go to article

Abstract

The article presents the investigation results of the crystallization (performed by means of the TDA method) and the microstructure of complex aluminium bronzes with the content of 6% Al, 4% Fe and 4% Ni, as well as Si additions in the scope of 1–2% and Cr additions in the scope of 0.1–0.3%, which have not been simultaneously applied before. For the examined bronze, the following tests were performed: hardness HB, impact strength (KU2). For bronze CuAl6Fe4Ni4Si2Cr0.3, characterizing in the highest hardness, wear tests were conducted with dry friction and the dry friction coefficient. The investigations carried out by means of the X-ray phase analysis demonstrated the following phases in the microstructure of this bronze: αCu, γ2 and complex intermetallic phases based on iron silicide type Fe3Si (M3Si M={Fe,Cr,…}). Compared to the normalized aluminium bronzes (μ=0.18–0.23), the examined bronze characterizes in relatively low wear and lower friction coefficient during dry friction (μ=0.147±0.016).
Go to article

Abstract

For the die casting conditions of aluminium bronzes assumed based on the literature data, a thick-walled bush was cast, made of complex aluminium bronze (Cu-Al-Fe-Ni-Cr). After the cast was removed from the mould, cracks were observed inside it. In order to identify the stage in the technological production process at which, potentially, the formation of stresses damaging the continuity of the microstructure created in the cast was possible (hot cracking and/or cold cracking), a computer simulation was performed. The article presents the results of the computer simulation of the process of casting the material into the gravity die as well as solidifying and cooling of the cast in the shape of a thick-walled bush. The simulation was performed with the use of the MAGMA5 program and by application of the CuAl10Ni5,5Fe4,5 alloy from the MAGMA5 program database. The results were compared with the location of the defects identified in the actual cast. As a result of the simulation of the die-casting process of this bush, potential regions were identified where significant principal stresses accumulate, which can cause local hot and cold cracking. Until now, no research has been made of die-cast aluminium bronzes with a Cr addition. Correlating the results of the computer simulation validated by the analysis of the actual cast made it possible to clearly determine the critical regions in the cast exposed to cracking and point to the causes of its occurrence. Proposals of changes in the bush die casting process were elaborated, in order to avoid hot tearing and cold cracking. The article discusses the results of preliminary tests being a prologue to the optimization of the die-casting process parameters of complex aluminium bronze thick-walled bushs.
Go to article

Abstract

Small additions of Cr, Mo and W to aluminium-iron-nickel bronze are mostly located in phases κi (i=II; III; IV),and next in phase α (in the matrix) and phase γ2. They raise the temperature of the phase transformations in aluminium bronzes as well as the casts’ abrasive and adhesive wear resistance. The paper presents a selection of feeding elements and thermal treatment times which guarantees structure stability, for a cast of a massive bush working at an elevated temperature (650–750°C) made by means of the lost foam technology out of composite aluminium bronze. So far, there have been no analyses of the phenomena characteristic to the examined bronze which accompany the process of its solidification during gasification of the EPS pattern. There are also no guidelines for designing risers and steel internal chill for casts made of this bronze. The work identifies the type and location of the existing defects in the mould’s cast. It also proposes a solution to the manner of its feeding and cooling which compensates the significant volume contraction of bronze and effectively removes the formed gases from the area of mould solidification. Another important aspect of the performed research was establishing the duration time of bronze annealing at the temperature of 750°C which guarantees stabilization of the changes in the bronze microstructure – stabilization of the changes in the bronze HB hardness.
Go to article

This page uses 'cookies'. Learn more