Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Analysis of power consumption presents a very important issue for power distribution system operators. Some power system processes such as planning, demand forecasting, development, etc.., require a complete understanding of behaviour of power consumption for observed area, which requires appropriate techniques for analysis of available data. In this paper, two different time-frequency techniques are applied for analysis of hourly values of active and reactive power consumption from one real power distribution transformer substation in urban part of Sarajevo city. Using the continuous wavelet transform (CWT) with wavelet power spectrum and global wavelet spectrum some properties of analysed time series are determined. Then, empirical mode decomposition (EMD) and Hilbert-Huang Transform (HHT) are applied for the analyses of the same time series and the results showed that both applied approaches can provide very useful information about the behaviour of power consumption for observed time interval and different period (frequency) bands. Also it can be noticed that the results obtained by global wavelet spectrum and marginal Hilbert spectrum are very similar, thus confirming that both approaches could be used for identification of main properties of active and reactive power consumption time series.
Go to article

Abstract

Purpose: to demonstrate the possibility of finding features reliable for more precise distinguishing between normal and abnormal Pattern Electroretinogram (PERG) recordings, in Continuous Wavelet Transform (CWT) coefficients domain. To determine characteristic features of the PERG and Pattern Visual Evoked Potential (PVEP) waveforms important in the task of precise classification and assessment of these recordings. Material and methods: 60 normal PERG waveforms and 60 PVEPs as well as 47 PERGs and 27 PVEPs obtained in some retinal and optic nerve diseases were studied in the two age groups (<= 50 years, > 50 years). All these signals were recorded in accordance with the guidelines of ISCEV in the Laboratory of Electrophysiology of the Retina and Visual Pathway and Static Perimetry, at the Department and Clinic of Ophthalmology of the Pomeranian Medical University. Continuous Wavelet Transform (CWT) was used for the time-frequency analysis and modelling of the PERG signal. Discriminant analysis and logistic regression were performed in statistical analysis of the PERG and PVEP signals. Obtained mathematical models were optimized using Fisher F(n1; n2) test. For preliminary evaluation of the obtained classification methods and algorithms in clinical practice, 22 PERGs and 55 PVEPs were chosen with respect to especially difficult discrimination problems (“borderline” recordings). Results: comparison between the method using CWT and standard time-domain based analysis showed that determining the maxima and minima of the PERG waves was achieved with better accuracy. This improvement was especially evident in waveforms with unclear peaks as well as in noisy signals. Predictive, quantitative models for PERGs and PVEPs binary classification were obtained based on characteristic features of the waveform morphology. Simple calculations algorithms for clinical applications were elaborated. They proved effective in distinguishing between normal and abnormal recordings. Conclusions: CWT based method is efficient in more precise assessment of the latencies of the PERG waveforms, improving separation between normal and abnormal waveforms. Filtering of the PERG signal may be optimized based on the results of the CWT analysis. Classification of the PERG and PVEP waveforms based on statistical methods is useful in preliminary interpretation of the recordings as well as in supporting more accurate assessment of clinical data.
Go to article

This page uses 'cookies'. Learn more