Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

The paper presents results of numerical calculations of a diaphragm wall model executed in Poznań clay formation. Two selected FEM codes were applied, Plaxis and Abaqus. Geological description of Poznań clay formation in Poland as well as geotechnical conditions on construction site in Warsaw city area were presented. The constitutive models of clay implemented both in Plaxis and Abaqus were discussed. The parameters of the Poznań clay constitutive models were assumed based on authors’ experimental tests. The results of numerical analysis were compared taking into account the measured values of horizontal displacements.
Go to article

Abstract

Assessment of the flexural buckling resistance of bisymmetrical I-section beam-columns using FEM is widely discussed in the paper with regard to their imperfect model. The concept of equivalent geometric imperfections is applied in compliance with the so-called Eurocode’s general method. Various imperfection profiles are considered. The global effect of imperfections on the real compression members behaviour is illustrated by the comparison of imperfect beam-columns resistance and the resistance of their perfect counterparts. Numerous FEM simulations with regard to the stability behaviour of laterally and torsionally restrained steel structural elements of hot-rolled wide flange HEB section subjected to both compression and bending about the major or minor principal axes were performed. Geometrically and materially nonlinear analyses, GMNA for perfect structural elements and GMNIA for imperfect ones, preceded by LBA for the initial curvature evaluation of imperfect member configuration prior to loading were carried out. Numerical modelling and simulations were conducted with use of ABAQUS/Standard program. FEM results are compared with those obtained using the Eurocode’s interaction criteria of Method 1 and 2. Concluding remarks with regard to a necessity of equivalent imperfection profiles inclusion in modelling of the in-plane resistance of compression members are presented.
Go to article

Abstract

Switched reluctance motors (SRMs) are still under development to maximise their already proven usefulness.Amagnetic circuit of theSRMcan be made of soft magnetic composites (SMCs). The SMCs are composed of iron powder with dielectric and have a lot of advantages in comparison to commonly used electrical steel. The paper deals with the modelling and analysis of theSRMproduced by Emerson Electric Co. forwashing machines. Numerical calculations and modelling were done using the FEMM 4.2 program. Magnetic flux densities and magnetic flux lines were calculated, as well as electromagnetic torque and inductance for changing the position of a stator to a rotor. The obtained results were compared with other measurement results and are quite similar. The developed numerical model will be used for the project of a motor with an SMC magnetic circuit.
Go to article

Abstract

In the paper, a solution to the problem of elastic deformation of thin-walled shell structures with complex shapes within the theory of geometrically non-linear shells has been presented. It is a modification of the Newton-Raphson method. In a variational formulation, the problem is based on a Lagrange’s functional for increments of displacements. The method has been applied to investigations of a harmonic drive, in particular to analysis of the stress state in the flexspline with a variable curvature as well as bearings of the generator. For verification of the obtained results, a more adequate FEM model calculated by ANSYS has been used.
Go to article

Abstract

The paper addresses the issues of quantification and understanding of Solid Oxide Fuel Cells (SOFC) based on numerical modelling carried out under four European, EU, research projects from the 7FP within the Fuel Cell and Hydrogen Joint Undertaking, FCH JU, activities. It is a short review of the main projects’ achievements. The goal was to develop numerical analyses at a single cell and stack level. This information was integrated into a system model that was capable of predicting fuel cell phenomena and their effect on the system behaviour. Numerical results were analysed and favourably compared to experimental results obtained from the project partners. At the single SOFC level, a static model of the SOFC cell was developed to calculate output voltage and current density as functions of fuel utilisation, operational pressure and temperature. At the stack level, by improving fuel cell configuration inside the stack and optimising the operation conditions, thermal stresses were decreased and the lifetime of fuel cell systems increased. At the system level, different layouts have been evaluated at the steady-state and by dynamic simulations. Results showed that increasing the operation temperature and pressure improves the overall performance, while changes of the inlet gas compositions improve fuel cell performance.
Go to article

This page uses 'cookies'. Learn more