Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

This article investigates possible use of waste gypsum (synthetic), recovered via flue-gas desulfurization from coal-fired electric power plants, in foundries. Energy sector, which in Eastern Europe is mostly composed from coal-fired electric power plants, is one of the largest producers of sulfur dioxide (SO2). In order to protect the environment and reduce the amount of pollution flue-gas desulfurization (FGD) is used to remove SO2 from exhaust flue gases of fossil-fuel power plants. As a result of this process gypsum waste is produced that can be used in practical applications. Strength and permeability tests have been made and also in-depth analysis of energy consumption of production process to investigate ways of preparing the synthetic gypsum for casting moulds application. This paper also assesses the chemical composition, strength and permeability of moulds made with synthetic gypsum, in comparison with moulds made with traditional GoldStar XL gypsum and with ceramic molds. Moreover examination of structure of synthetic gypsum, the investigations on derivatograph and calculations of energy consumption during production process of synthetic gypsum in wet flue-gas desulfurization were made. After analysis of gathered data it’s possible to conclude that synthetic gypsum can be used as a material for casting mould. There is no significant decrease in key properties, and on the other hand there is many additional benefits including low energy consumption, decreased cost, and decreased environmental impact.
Go to article

Abstract

Trace elements contained in coal escape with flue gas from energy sources into the air or move towards other components of the environment with by-products captured in electrofilters (EF) and flue gas desulphurisation (FGD) plants. The existing knowledge about the distribution of frequently dangerous trace elements contained in these products is insufficient. Studies were therefore undertaken in selected power plants to investigate the distribution of trace elements in coal, slag, as well as dust containment and flue gas desulphurisation products, such as fly ash captured in dust collectors, desulphurisation gypsum and semi-dry scrubbing FGD products. Using the technique of flame atomic absorption spectrometry (F-AAS) and mercury analyser, the following were determined in the research material samples: Cr, Cu, Hg, Mn, Ni, Pb and Zn. The studies have a reconnaissance character. The authors have presented the results of determinations for selected trace elements in samples taken at Jaworzno III and Siersza Power Plants, which burn hard coal, and in Bełchatów Power Plant, burning brown coal. A balance of the examined trace elements in a stream of coal fed into the boiler and in streams of waste and products carried away from the plant was prepared. The balance based on the results of analyses from Bełchatów Power Plant was considered encouraging enough to undertake further investigations. The research confirmed that due to the distribution in the process of coal combustion and flue gas treatment, a dominant part of particular trace elements’ stream moves with solid waste and products, while air emission is marginal. Attention was paid to the importance of research preparation, the manner of sample taking and selection of analytical methods.
Go to article

This page uses 'cookies'. Learn more