Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 53
items per page: 25 50 75
Sort by:

Abstract

This paper presents an evaluation of the Hypoplastic Clay constitutive model for finite element analysis of deep excavations and displacements induced by excavations in the influence zone. A detailed description and formulation of the Hypoplastic Clay soil model is included. A parametric case study of a deep excavation executed in Pliocene clays is presented. FE analysis was performed using several soil models (Mohr-Coulomb, Modified Mohr-Coulomb, Drucker-Prager, Modified Cam-Clay, Hypoplastic Clay) and the results were compared to in-situ displacements measurements taken during construction. Final conclusions concerning the suitability of the Hypoplastic Clay model for deep excavation modelling in terms of accurate determination of horizontal displacements of the excavation wall, the uplift of the bottom of excavation, and, most importantly,vertical displacements of the terrain in the vicinity of the excavation are presented.
Go to article

Abstract

Thermodynamic descriptions of the ternary Fe-B-V system and its binary sub-system B-V, are developed using experimental thermodynamic and phase equilibrium data from the literature. The thermodynamic parameters of the other binaries, Fe-V and Fe-B, are taken from earlier assessments slightly modifying the Fe-V description. The work is in the context of a new Fe-B-X (X = Cr, Ni, Mn, V, Si, Ti, C) database. The solution phases are described using substitutional solution model. The borides are treated as stoichiometric or semi-stoichiometric phases and described with two-sublattice models.
Go to article

Abstract

Neodymium-Iron-Boron (Nd-Fe-B) magnets are considered to have the highest energy density, and their applications include electric motors, generators, hard disc drives, and MRI. It is well known that a fiber structure with a high aspect ratio and the large specific surface area has the potential to overcome the limitations, such as inhomogeneous structures and the difficulty in alignment of easy axis, associated with such magnets obtained by conventional methods. In this work, a suitable heat-treatment procedure based on single-step and multistep treatments to synthesize sound electrospun Nd-Fe-B-O nanofibers of Φ572 nm was investigated. The single-step heat-treated (directly heat-treated at 800°C for 2 h in air) samples disintegrated along with the residual organic compounds, whereas the multistep heat-treated (sequential three-step heat-treated including three steps;: dehydration (250°C for 30 min in an inert atmosphere), debinding (650°C for 30 min in air), and calcination (800°C for 1 h in air)) fibers maintained sound fibrous morphology without any organic impurities. They could maintain such fibrous morphologies during the dehydration and debinding steps because of the relatively low internal pressures of water vapor and polymer, respectively. In addition, the NdFeO3 alloying phase was dominant in the multistep heat-treated fibers due to the removal of barriers to mass transfer in the interparticles.
Go to article

Abstract

The reverse bending and straightening test is conducted on wires used for civil engineering applications to detect laminations which can pose a threat to the integrity of the wires. The FE simulations of the reverse bending and straightening of wires with laminations revealed that the reverse bending and straightening test is only effective in revealing or detecting near-surface laminations with lengths from 25 mm located up to 30% of the wire’s thickness and may not be an effective test to detect mid-thickness, near-mid-thickness, and short near-surface laminations with lengths below 15 mm. This is because wires with mid-thickness, near-mid-thickness and short near-surface laminations will pass through the reverse bending and straightening procedures without fracturing and therefore mid-thickness, near-mid-thickness and short near-surface laminations may go undetected. Consequently, other in-line non destructive testing methods might have to be used to detect mid-thickness, near-mid-thickness and short near-surface laminations in the wires.
Go to article

Abstract

An economical alternative for the steel industry which uses a separate ferrosilicon and aluminum for the deoxidization of steel is a complex deoxidizer in the form of FeSiAl alloys. The effectiveness of complex deoxidizers is higher and they have a positive effect on quality improvement and also for mechanical properties of the finished steel. It is associated with a smaller number of non-metallic inclusions and a more favorable its distribution in the structure of steel. Noteworthy are the waste from the mining industry simultaneously contains SiO2 and Al2O3 oxides with a few of dopants in the form of CaO, MgO, FeO, TiO2 oxides. These wastes are present in large quantities and can be a cheap raw material for obtaining complex FeSiAl ferroalloys by an electrothermal method. “Poor” hard coal grades which so far did not apply as a reducing agent in the ferroalloy industry because of the high ash content can also be a raw material for the electrothermal FeSiAl process. The electrothermal FeSiAl melting process is similar to the ferrosilicon process in the submerged arc furnace. For this reason, a model based on Gibbs’ free enthalpy minimization algorithm was used to analyze the simultaneous reduction of SiO2 and Al2O3 oxides, which was originally elaborated for the ferrosilicon smelting process. This is a system of two closed reactors: the upper one with the lower temperature and the lower one with the higher temperature. Between the reaction system and the environment, and between the reactors inside the system, there is a cyclical mass transfer in moments when the state of equilibrium is reached in the reactors. Based on the model, the basic parameters of the electrothermal reduction process of SiO2 and Al2O3 oxides were determined and a comparative analysis was made towards the ferrosilicon process.
Go to article

Abstract

A series of nanocomposite graphene/CoFe2O4 and graphene/NiFe2O4 hybrid materials was synthesized via facile, one-pot solvothermal route. The materials were obtained using two pressure methods: synthesis in the autoclave and synthesis in the microwave solvothermal reactor. The use of a microwave reactor enabled to significantly shorten the synthesis time up to 15 min. All the syntheses were carried out in a solution of ethanol. The effect of processing conditions and composite composition on the physicochemical properties and electric conductivity was studied. The specific surface area, density, morphology, phase composition, thermal properties and electric conductivity of the obtained composites were investigated. The results of studies of composites obtained in an autoclave and in a microwave reactor were compared.
Go to article

Abstract

Directional solidification technique is an important research instrument to study solidification of metals and alloys. In the paper the model [6,7,8] of directional solidification in special Artemis-3 facility was presented. The current work aimed to propose the ease and efficient way in calibrating the facility. The introduced M coefficient allowed effective calibration and implementation of defined thermal conditions. The specimens of AlSi alloys with Fe-rich intermetallics and especially deleterious β-Al5FeSi were processed by controlled solidification velocity, temperature gradient and cooling rate.
Go to article

Abstract

Solidification of AlSiFe alloys was studied using a directional solidification facility and the CALPHAD technique was applied to calculate phase diagrams and to predict occurring phases. The specimens solidified by electromagnetic stirring showed segregation across, and the measured chemical compositions were transferred into phase diagrams. The ternary phase diagrams presented different solidification paths caused by segregation in each selected specimen. The property diagrams showed modification in the sequence and precipitation temperature of the phases. It is proposed in the study to use thermodynamic calculations with Thermo-Calc which enables us to visualize the mushy zone in directional solidification. 2D maps based on property diagrams show a mushy zone with a liquid channel in the AlSi7Fe1.0 specimen center, where significant mass fraction (33%) of β-Al5FeSi phases may precipitate before α-Al dendrites form. Otherwise liquid channel occurred almost empty of β in AlSi7Fe0.5 specimen and completely without β in AlSi9Fe0.2. The property diagrams revealed also possible formation of α–Al8Fe2Si phases.
Go to article

Abstract

In this study, variations in the contact resistance of electroplated Au-Fe alloy layers with Fe content were investigated. The contact resistance of electroplated Au-Fe alloy layers that were subject to thermal aging at 260°C in the atmosphere, tended to increase significantly with an increase in the Fe content. Through an analysis method employing X-ray photoelectron spectroscopy (XPS/ ESCA) and Auger electron spectroscopy (AES), Ni oxides, such as NiO and Ni2O3, on the surface of the thermally aged electroplated Au-Fe alloy layers were observed. It is believed that the Ni oxide existing on the surface diffused from the underlying electroplated Ni layers to the surface through the grain boundaries in the electroplated Au-Fe layers during the thermal aging. As the Fe content in the electroplated Au-Fe layers increased, the grain size decreased. As the grain size decreases, more Ni oxide was detected on the surface. Therefore, with a rise in the Fe content, more Ni diffuses to the surface via grain boundaries, and more Ni oxide is formed on the surface of the electroplated Au-Fe layers, increasing the contact resistance of the electroplated Au-Fe alloy layers.
Go to article

Abstract

The mechanical behavior and the change of retained austenite of nanocrystalline Fe-Ni alloy have been investigated by considering the effect of various Ni addition amount. The nanocrystalline Fe-Ni alloy samples were rapidly fabricated by spark plasma sintering (SPS). The SPS is a well-known effective sintering process with an extremely short densification time not only to reach a theoretical density value but also to prevent a grain growth, which could result in a nanocrystalline structures. The effect of Ni addition on the compressive stress-strain behavior was analyzed. The variation of the volume fraction of retained austenite due to deformation was quantitatively measured by means of x-ray diffraction and microscope analyses. The strain-induced martensite transformation was observed in Fe-Ni alloy. The different amount of Ni influenced the rate of the strain-induced martensite transformation kinetics and resulted in the change of the work hardening during the compressive deformation.
Go to article

Abstract

The paper presents the results and provides an analyse of the geometric structure of Fe-Al protective coatings, gas-treated under specified GDS conditions. The analysis of the surface topography was conducted on the basis of the results obtained from the SEM data. Topographic images were converted to three-dimensional maps, scaling the registered amplitude coordinates of specific gray levels to the relative range of 0÷1. This allowed us to assess the degree of surface development by determining the fractal dimension. At the same time, the generated three-dimensional spectra of the autocorrelation function enabled the researchers to determine the autocorrelation length (Sal) and the degree of anisotropy (Str) of the surfaces, in accordance with ISO 25178. Furthermore, the reconstructed three-dimensional images of the topography allowed us to evaluate the functional properties o the studied surfaces based on the Abbott-Firestone curve (A-F), also known as the bearing area curve. The ordinate describing the height of the profile was replaced by the percentage of surface amplitude in this method, so in effect the shares of the height of the three-dimensional topographic map profiles of various load-bearing properties were determined. In this way, both the relative height of peaks, core and recesses as well as their percentages were subsequently established.
Go to article

Abstract

The paper presents a method of analysis of bone remodelling in the vicinity of implants. The authors aimed at building a model and numerical procedures which may be used as a tool in the prosthesis design process. The model proposed by the authors is based on the theory of adaptive elasticity and the lazy zone concept. It takes into consideration not only changes of the internal structure of the tissue (described by apparent density) but also surface remodelling and changes caused by the effects revealing some features of “creep”. Finite element analysis of a lumbar spinal segment with an artificial intervertebral disc was performed by means of the Ansys system with custom APDL code. The algorithms were in two variants: the so-called site-independent and site-specific. Resultant density distribution and modified shape of the vertebra are compared for both of them. It is shown that this two approaches predict the bone remodelling in different ways. A comparison with available clinical outcomes is also presented and similarities to the numerical results are pointed out.
Go to article

Abstract

A method of detecting honeycombing damage in a reinforced concrete beam using the finite element model updating technique was proposed. A control beam and two finite element model srepresenting different severity of damage were constructed using available software and the defect parameters were updated. Analyses were performed on the finite element models to approximate the modal parameters. A datum and a control finite element model to match the datum test beams with honeycombs were prepared. Results from the finite element model were corrected by updating the Young’s modulus and the damage parameters. There was a loss of stiffness of 3% for one case, and a loss of 7% for another. The more severe the damage, the higher the loss of stiffness. There was no significant loss of stiffness by doubling the volume of the honeycombs.
Go to article

Abstract

Paper describes the results of Fe80Si11B9 amorphous ribbon investigation after pulsed laser interference heating and conventional annealing. As a result of interference heating periodically placed laser heated microareas were obtained. Structure characterisation by scanning and transmission electron microscopy showed in case of laser heated samples presence of crystalline nanostructure in amorphous matrix. Microscopy observations showed significant difference in material structure after laser heating – nanograin structure, and material after annealing – dendritic structure. Magnetic force microscopy investigation showed expanded magnetic structure in laser heated microareas, while amorphous matrix did not give magnetic signal. Change of magnetic properties was examined by magnetic hysteresis loop measurement, which showed that the laser heating did not have a significant influence on soft magnetic properties.
Go to article

Abstract

The objective of the present research is to develop the novel multi-compaction technology to produce hybrid structure in powder metallurgy (P/M) components using dissimilar Fe-based alloys. Two distinct powder alloys with different compositions were are used in this study: Fe-Cr-Mo-C pre-alloyed powder for high strength and Fe-Cu-C mixed powder for enhanced machinability and lower material cost. Initially, Fe-Cu-C was pre-compacted using a bar-shaped die with lower compaction pressure. The green compact of Fe-Cu-C alloy was inserted into a die residing a half of the die, and another half of the die was filled with the Fe-Cr-Mo-C powder. Then they subsequently underwent re-compaction with higher pressure. The final compact was sintered at 1120°C for 60 min. In order to determine the mechanical behavior, transverse rupture strength (TRS) and Vickers hardness of sintered materials were measured and correlated with density variations. The microstructure was characterized using optical microscope and scanning electron microscope to investigate the interfacial characteristics between dissimilar P/M alloys.
Go to article

Abstract

The cast alloys crystallizing in Fe-C-V system are classified as white cast iron, because all the carbon is bound in vanadium carbides. High vanadium cast iron has a very high abrasion resistance due to hard VC vanadium carbides. However, as opposed to ordinary white cast iron, this material can be treated using conventional machining tools. This article contains the results of the group of Fe-C-V alloys of various microstructure which are been tested metallographic, mechanical using an INSTRON machine and machinability with the method of drilling. The study shows that controlling the proper chemical composition can influence on the type and shape of the crystallized matrix and vanadium carbides. This makes it possible to obtain a high-vanadium cast iron with very high wear resistance while maintaining a good workability.
Go to article

Abstract

Operating conditions turbocharger (high temperature and corrosive environment) mean that the device is classified into one of the most elements of the emergency drive unit of the car. The failure rate can be reduced through the use of modern heat-resistant materials, which include based alloys FeAl intermetallic phase. Intermetallic alloys belong to the group of materials known as prospective due to their advantageous properties, in particular their high specific strength, high melting point and good resistance to corrosion and oxidation at high temperatures. In the article presented results of the research axis roll control system variable geometry blades made of intermetallic alloy Fe40Al5Cr0,2TiB as a substitute so far made of austenitic steel. A verification service conditions, comparing the degradation of the material previously used by manufacturers of turbochargers for elements of the control system degradation axes made of intermetallic alloy Fe40Al5Cr0,2TiB. The study consisted of determining microstructure and corrosion products after use. Observations of the structure and the surface of the corrosion tests were performed using light microscopy, scanning electron microscopy and X-ray microanalysis EDS chemical composition.
Go to article

Abstract

Detailed studies on the effects of pulsed laser interference heating on surface characteristics and subsurface microstructure of amorphous Fe80Si11B9 alloy are reported. Laser interference heating, with relatively low pulsed laser energy (90 and 120 mJ), but with a variable number (from 50-500) of consecutive laser pulses permitted to get energy accumulation in heated areas. Such treatment allowed to form two- Dimensional micro-islands of laser-affected material periodically distributed in amorphous matrix. The crystallization process of amorphous FeSiB ribbons was studied by means of scanning and transmission electron microscopy. Detailed microstructural examination showed that the use of laser beam, resulted in development of nanostructure in the heated areas of the amorphous ribbon. The generation of nanocrystalline seed islands created by pulsed laser interference was observed. This key result may evidently give new knowledge concerning the differences in microstructure formed during the conventional and lased induced crystallization the amorphous alloys. Further experiments are needed to clarify the effect of pulsed laser interference crystallization on magnetic properties of these alloys.
Go to article

Abstract

Higher active power of a submerged arc furnace is commonly believed to increase its capacity in the process of ferrosilicon smelting. This is a true statement but only to a limited extent. For a given electrode diameter d, there is a certain limit value of the submerged arc furnace active power. When this value is exceeded, the furnace capacity in the process of ferrosilicon smelting does not increase but the energy loss is higher and the technical and economic indicators become worse. Maximum output regarding the reaction zone volumes is one of parameters that characterize similarities of furnaces with various geometrical parameters. It is proportional to d3 and does not depend on the furnace size. The results of statistical analysis of the ferrosilicon smelting process in the 20 MVA furnace have been presented. In addition to basic electrical parameters, such as active power and electrical load of the electrodes, factors contributing to higher resistance of the furnace bath and resulting lower reactive power Px demonstrate the most significant effect on the electrothermal process of ferrosilicon smelting. These parameters reflect metallurgical conditions of ferrosilicon smelting, such as the reducer fraction, position of the electrodes and temperature conditions of the reaction zones.
Go to article

Abstract

In this study, medium-carbon steel was subjected to warm deformation experiments on a Gleeble 3500 thermosimulator machine at temperatures of 550°C and 650°C and strain rates of 0.001 s–1 to 1 s–1. The warm deformation behavior of martensite and the effects of strain rate on the microstructure of ultrafine grained medium-carbon steel were investigated. The precipitation behavior of Fe3C during deformation was analyzed and the results showed that recrystallization occurred at a low strain rate. The average ultrafine ferrite grains of 500 ± 58 nm were fabricated at 550°C and a strain rate of 0.001 s–1. In addition, the size of Fe3C particles in the ferrite grains did not show any apparent change, while that of the Fe3C particles at the grain boundaries was mainly affected by the deformation temperature. The size of Fe3C particles increased with the increasing deformation temperature, while the strain rate had no significant effect on Fe3C particles. Moreover, the grain size of recrystallized ferrite decreased with an increase in the strain rate. The effects of the strain rate on the grain size of recrystallized ferrite depended on the deformation temperature and the strain rate had a prominent effect on the grain size at 550°C deformation temperature. Finally, the deformation resistance apparently decreased at 550°C and strain rate of 1 s–1 due to the maximum adiabatic heating in the material.
Go to article

Abstract

In this study, precisely controlled large scale gas atomization process was applied to produce spherical and uniform shaped high entropy alloy powder. The gas atomization process was carried out to fabricate CoCrFeNiMn alloy, which was studied for high ductility and mechanical properties at low temperatures. It was confirmed that the mass scale, single phase, equiatomic, and high purity spherical high entropy alloy powder was produced by gas atomization process. The powder was sintered by spark plasma sintering process with various sintering conditions, and mechanical properties were characterized. Through this research, we have developed a mass production process of high quality and spherical high entropy alloy powder, and it is expected to expand applications of this high entropy alloy into fields such as powder injection molding and 3D printing for complex shaped components.
Go to article

Abstract

The paper deals with the influence of manganese in AlSi7Mg0.3 alloy with higher iron content. Main aim is to eliminate harmful effect of intermetallic – iron based phases. Manganese in an alloy having an iron content of about 0.7 wt. % was graded at levels from 0.3 to 1.4 wt. %. In the paper, the effect of manganese is evaluated with respect to the resulting mechanical properties, also after the heat treatment (T6). Morphology of the excluded intermetallic phases and the character of the crystallisation of the alloy was also evaluated. From the obtained results it can be concluded that the increasing level of manganese in the alloy leads to an increase in the temperature of the β-Al5FeSi phase formation and therefore its elimination. Reducing the amount of β-Al5FeSi phase in the structure results in an improvement of the mechanical properties (observed at levels of 0.3 to 0.8 wt. % Mn). The highest addition of Mn (1.4 wt.%) leads to a decrease in the temperature corresponding to the formation of eutectic silicon, which has a positive influence on the structure, but at the same time the negative sludge particles were also present
Go to article

Abstract

The paper presents the results of the effect of isothermal heating time on the disappearance of strain hardening (the softening degree) of the studied high-manganese TRIPLEX type steels at a temperature of 900 and 1000°C. In order to determine the kinetics of recrystallization of austenite plastically deformed for selected steels, hot compression tests with draft ε = 0.2 were made. The presented results reveal that the complete recrystallization of austenite needs long isothermal heating times. In industrial conditions, such long times are not used, therefore in the initial rolling passages, the time required for half recrystallization of austenite t0.5 is often used. The total disappearance of the strain hardening, completion of the recrystallization of austenite tested high-manganese X98 and X105 TRIPLEX type steels isothermal heating time requires far more than 200 s. The increase of the deformation temperature is a factor influencing the acceleration of the disappearance of strain hardening.
Go to article

Abstract

Fe-Cr-B alloy is a material with precipitation of boride inside Fe matrix, and it features outstanding hardness and wear resistance properties. However, Fe-Cr-B alloy is a difficult material to process, making it difficult to use as a bulk type structure material which requires delicate shapes. This study attempted to manufacture Fe-Cr-B alloy using a 3D printing process, laser metal deposition. This study also investigated the microstructure, hardness and compression properties of the manufactured alloy. Phase analysis results is confirmed that α-Fe phase as matrix and (Cr, Fe)2B phase as reinforcement phase. In the case of (Cr, Fe)2B phase, differences were observed according to the sample location. While long, coarse, unidirectional needle-type boride phases (~11 μm thickness) were observed in the center area of the sample, relatively finer boride phases (~6 μm thickness) in random directions were observed in other areas. At room temperature compression test results confirmed that the sample had a compression strength is approximately 2.1 GPa, proving that the sample is a material with extremely high strength. Observation of the compression fracture surface identified intergranular fractures in areas with needle-type boride, and transgranular fractures in areas with random borides. Based on this results, this study also reviewed the deformation behavior of LMD Fe-Cr-B alloy in relation to its microstructures.
Go to article

This page uses 'cookies'. Learn more