Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 47
items per page: 25 50 75
Sort by:

Abstract

Hot point drills were carried through in the Hans Glacier (Spitsbergen). For that purpose a non-cored hot point drill of 700 wattage was constructed. It was used among others for installing the ablation-movement stakes, for hydrological observations and in the boreholes an ice temperature was controlled.
Go to article

Abstract

The paper focuses on investigation of properties of two most widely used self-set sand binder systems APNB and FNB across the Globe, for making molds and cores in foundries to produce castings of different sizes involving wide range of metals and alloys, ferrous and nonferrous. This includes study of compression strength values of samples made out of molding sand at different binder addition level using new, mechanically reclaimed (MR) and thermally reclaimed (TR) sand. Strength values studied include dry strength (at room temperature) at specified intervals simulating different stages of mold handling, namely stripping and pre heating, followed by degraded strength after application of thinner based zircon wash by brush, subsequent lighting of, then checking strength both in warm (degraded strength) & cold (recovered strength) conditions. Throughout the cycle of mold movement from stripping to knock out, strength requirements can be divided into two broad classifications, one from stripping to closing (dry strength) and another from pouring to knock out (hot & retained strength). Although the process for checking of dry strength are well documented, no method using simple equipments for checking hot & retained strength are documented in literature. Attempts have been made in this paper to use some simple methods to standardize process for checking high strength properties using ordinary laboratory equipments. Temperature of 450°C has been chosen by trial & error method to study high temperature properties to get consistent & amplified values. Volume of gases generated for both binders in laboratory at 850°C have also been measured. Nature of gases including harmful BTEX and PAH generated on pyrolysis of FNB and APNB bonded sands are already documented in a publication [1]. This exercise has once again been repeated in same laboratory, AGH University, Poland with latest binder formulations in use in two foundries in India.
Go to article

Abstract

The paper discusses experimental studies to determine the effect of the die working portion angle on the lubrication conditions, zinc coating thickness and the mechanical properties of medium-carbon steel wires. The test material was 5.5 mm-diameter wire rod which was drawn into 2.2 mm-diameter wire in seven draws at a drawing speed of v = 10 m/s. Conventional drawing dies of a working portion angle of α = 3, 4, 5, 6, 7°, respectively, were used for the drawing process. After the drawing process, the quantity of the lubricant on the wire surface and the thickness of the zinc coating were determined in individual draws. Testing the finished 2.2 mm-diameter wires for mechanical properties, on the other hand, determined the effect of the die working portion on the yield point, tensile strength, uniform and total elongation, reduction in area, the number of twists and the number of bends.
Go to article

Abstract

In the paper, verification of welding process parameters of overlap joints of aluminium alloys EN AW-6082 and EN AW-7075, determined on the grounds of a numerical FEM model and a mathematical model, is presented. A model was prepared in order to determine the range of process parameters, for that the risk of hot crack occurrence during welding the material with limited weldability (EN AW-7075) would be minimum and the joints will meet the quality criteria. Results of metallographic and mechanical examinations of overlap welded joints are presented. Indicated are different destruction mechanisms of overlap and butt joints, as well as significant differences in their tensile strength: 110 to 135 MPa for overlap joints and 258 MPa on average for butt joints.
Go to article

Abstract

The article presents an analysis of the multi-operation hot die forging process, performed on a press, of producing a lever forging used in the motorcycles of a renowned producer by means of numerical simulations. The investigations were carried out in order to improve (perfect) the currently applied production technology, mainly due to the presence of forging defects during the industrial production process. The defects result mainly from the complicated shape of the forging (bent main axis, deep and thin protrusions, high surface diversity in the cross section along the length of the detail), which, during the filling of the die by the deformed material, causes the presence of laps, wraps and underfills on the forging. Through the determination of the key parameters/quantities during the forging process, which are difficult to establish directly during the industrial process or experimentally, a detailed and complex analysis was performed with the use of FEM as well as through microstructure examinations. The results of the performed numerical modelling made it possible to determine: the manner of the material flow and the correctness of the impression filling, as well as the distributions of temperature fields and plastic deformations in the forging, and also to detect the forging defects often observed in the industrial process. On this basis, changes into the process were introduced, making it possible to improve the currently realized technology and obtain forgings of the proper quality as well as shape and dimensions.
Go to article

Abstract

Main aim of submitted work is evaluation and experimental verification of inoculation effect on Al alloys hot-tear sensitivity. Submitted work consists of two parts. The first part introduces the reader to the hot tearing in general and provides theoretical analysis of hot tearing phenomenon. The second part describes strontium effect on hot tearing susceptibility, and gives the results on hot tearing for various aluminium alloys. During the test, the effect of alloy chemical composition on hot tearing susceptibility was also analyzed. Two different Al-based alloys were examined. Conclusions deals with effect of strontium on hot tearing susceptibility and confirms that main objective was achieved.
Go to article

Abstract

Hot tearing severity was evaluated in this experiment by introducing a new apparatus called Constrained Rod Casting Modified Horizontal (CRCM-Horizontal). Six constraint bars with different lengths can produce hot tearing on the cast sample. Mold position was modified from vertical to horizontal and the shape was changed from a harp shape to a star shape, which allows for the liquid metal to feed into each rod cavity simultaneously. Hot tearing development was recorded along the bars by a digital camera. A new Hot Tearing Susceptibility (HTS) formula was developed for quantitative investigation of hot tearing on a cast sample. The parameters of the HTS formula are bar length of cast sample (Li), tear severity (Ci) and location of hot tear (Pi). Footprint charts and hot tear scales are used to illustrate hot tearing severity. The experiment was conducted with Al-1.36Zn-1.19Si and Al-5.9Cu-1.9Mg alloys to investigate the sensibility of the apparatus and modification its operation.
Go to article

Abstract

The article reports the results of a comparative analysis made for three novel unconventional gear wheel forging processes based on the authors’ patented [5,6,21] plastic forming methods developed chiefly for the purposes of extruding hollow products as well as valves and pins. These processes are distinguished by the fact that part of the tooling elements which are normally fixed during conventional forging are purposefully set in motion. This is intended to change the conditions of friction at the metal-tool contact surface and to induce additional thermal effects due to the transformation of the plastic deformation energy into thermal energy and, as a consequence, to improve the plastic flow of metal and to reduce the force parameters of the process.
Go to article

Abstract

The paper presents dynamic model of hot water storage tank. The literature review has been made. Analysis of effects of nodalization on the prediction error of generalized finite element method (GFEM) is provided. The model takes into account eleven various parameters, such as: flue gases volumetric flow rate to the spiral, inlet water temperature, outlet water flow rate, etc. Boiler is also described by sizing parameters, nozzle parameters and heat loss including ambient temperature. The model has been validated on existing data. Adequate laboratory experiments were provided. The comparison between 1-, 5-, 10- and 50-zone boiler is presented. Comparison between experiment and simulations for different zone numbers of the boiler model is presented on the plots. The reason of differences between experiment and simulation is explained.
Go to article

Abstract

This paper discusses the mechanical properties of a material fabricated from commercially available metal powder mixtures designed for use as a metal matrix of diamond impregnated composites. The mixtures with the catalogue numbers CSA and CSA800 provided by a Chinese producer are suitable for experimental laboratory testing. The specimens were fabricated in a graphite mould using hot pressing. The material was tested for density, porosity, hardness, and tensile strength under static loading. A scanning electron microscope (SEM) was used to analyze the microstructure and cleavage fracture of broken specimens. It was essential to determine how the chemical composition and the fabrication process affected the microstructure and properties of the material. The properties of the sinters were compared with those of hot pressed specimens fabricated from sub-micron size cobalt powder (Cobalt SMS). Although the as-consolidated material is inferior to cobalt, it displays a favourable combination of hardness, yield strength and ductility, and seems to have a great potential for moderate and general purpose applications.
Go to article

Abstract

The investigations were inspired with the problem of cracking of steel castings during the production process. A single mechanism of decohesion – the intergranular one – occurs in the case of hot cracking, while a variety of structural factors is decisive for hot cracking initiation, depending on chemical composition of the cast steel. The low-carbon and low-alloyed steel castings crack due to the presence of the type II sulphides, the cause of cracking of the high-carbon tool cast steels is the net of secondary cementite and/or ledeburite precipitated along the boundaries of solidified grains. Also the brittle phosphor and carbide eutectics precipitated in the final stage solidification are responsible for cracking of castings made of Hadfield steel. The examination of mechanical properties at 1050°C revealed low or very low strength of high-carbon cast steels.
Go to article

Abstract

The article presents the method to assess the diffusion coefficient D in the sub-layer of intermetallic phases formed during hot-dip galvanizing “Armco” iron and ductile cast iron EN-GJS-500-7. Hot-dip galvanizing is one of the most popular forms of long-term protection of Fe-C alloys against corrosion. The process for producing a protective layer of sufficient quality is closely related to diffusion of atoms of zinc and iron. The simulation consist in performed a hot-dip galvanizing in laboratory condition above Fe-C alloys, in the Department of Engineering of Cast Alloys and Composites. Galvanizing time ranged from 15 to 300 seconds. Then metallographic specimens were prepared, intermetallic layers were measured and diffusion coefficient (D) were calculated. It was found that the diffusion coefficient obtained during hot-dip galvanizing “Armco” iron and zinc is about two orders of magnitude less than the coefficient obtained on ductile cast iron EN-GJS-500-7.
Go to article

Abstract

The paper presents the results of investigations of the growth of protective coating on the surface of ductile iron casting during the hot-dip galvanizing treatment. Ductile iron of the EN-GJS-600-3 grade was melted and two moulds made by different technologies were poured to obtain castings with different surface roughness parameters. After the determination of surface roughness, the hot-dip galvanizing treatment was carried out. Based on the results of investigations, the effect of casting surface roughness on the kinetics of the zinc coating growth was evaluated. It was found that surface roughness exerts an important effect on the thickness of produced zinc coating
Go to article

Abstract

Nil strength temperature of 1062°C and nil ductility temperature of 1040°C were experimentally set for CuFe2 alloy. The highest formability at approx. 1020°C is unusable due to massive grain coarsening. The local minimum of ductility around the temperature 910°C is probably due to minor formation of γ-iron. In the forming temperatures interval 650-950°C and strain rate 0.1-10 s–1 the flow stress curves were obtained and after their analysis hot deformation activation energy of 380 kJ·mol–1 was achieved. Peak stress and corresponding peak strain values were mathematically described with good accuracy by equations depending on Zener-Hollomon parameter.
Go to article

Abstract

Spectral remote sensing is a very popular method in atmospheric monitoring. The paper presents an approach that involves mid-infrared spectral measurements of combustion processes. The dominant feature in this spectral range is CO2 radiation, which is used to determine the maximum temperature of nonluminous flames. Efforts are also made to determine the temperature profile of hot CO2, but they are limited to the laboratory conditions. The paper presents an analysis of the radiation spectrum of a non-uniform-temperature gas environment using a radiative transfer equation. Particularly important are the presented experimental measurements of various stages of the combustion process. They allow for a qualitative description of the physical phenomena involved in the process and therefore permit diagnostics. The next step is determination of a non-uniform-temperature profile based on the spectral radiation intensity with the 8 m optical path length.
Go to article

Abstract

This paper analyses the heat treatment of the hot-dip zinc coating deposited on both cast iron and steel. The aim of research is to increase coating hardness and wear resistance without decreasing its anticorrosion properties. Hot-dip zinc coating was deposited in industrial conditions (acc. PN-EN ISO 10684) on disc shape samples and bolts M12x60. The achieved results were assessed on the basis of microscopic observation (with the use of an optical and scanning microscope), EDS (point and linear) analysis and micro-hardness measurements. It was discovered that the heat treatment of zinc coating results in an increase in hardness which is caused by the corresponding changes in microstructure.
Go to article

Abstract

The publication presents a novel concept of the process of plastic forming of variable longitudinal-section cylindrical products, being the subject of Patent Application P.427426 [1]. Additionally, these products are provided with a connection stub pipe. The plastic forming method proposed in the article combines many advantages and utilitarian benefits associated with the manufacturing technology itself, as well as with its further implementation. Using stock in the form of normalized bar commonly available in the metal product market as a finished product obviously reduces the process costs involved with stock preparation, i.e. casting, rolling, machining, etc. It also results in obtaining a much smaller surface area of stock contact with the tool and, as a consequence, a smaller surface of stock friction against the tool, which contributes to a reduction of force needed for the plastic forming of the product. The smaller contact surface area and the shorter time of stock contact with the cooler tool cause, above all, less intensive heat exchange and stock chilling. This has a significant effect on the plasticity of the cast material and, as a consequence, the plastic forming force. The proposed method enables also manufacturing cylinders with either a closed or open stub pipe with a regulated length and a varying section. In addition, unlike the method known from Polish Patent Specification PL 212062 [2], the proposed method does not require using a multi-tool press. The upper punch is furnished with a flange, whose job is to start the stock extruding sleeve at the next process stage.
Go to article

Abstract

The paper reports on the photoelectrical performance of the long wavelength infrared (LWIR) HgCdTe high operating temperature (HOT) detector. The detector structure was simulated with commercially available software APSYS by Crosslight Inc. taking into account SRH, Auger and tunnelling currents. A detailed analysis of the detector performance such as dark current, detectivity, time response as a function of device architecture and applied bias is performed, pointing out optimal working conditions.
Go to article

Abstract

The paper presents a description of the phenomena occurring on the surface of the forging dies. A detailed analysis was made of 24 pre-forging dies due to the most intensive wear in this operation. To compare the results, new tools were also analysed. The research described in the study showed that the most dangerous factor for the hot forging process analysed is thermal-mechanical fatigue, which causes small cracks, which in turn quickly leads to the formation of a crack network on the entire contact surface of the tool with forged material. The second phenomenon is the tempering of the surface of the material for a long-term temperature effect. The presence of hard iron oxides in the form of scale from forging material is the accompanying phenomenon that intensifies the processes of tool wear. The paper presents the results of the analysis of the presence of residual magnetic field for forging tools and the results of laboratory tests of wear processes of tool steels for hot work in the presence of a magnetic field and in the presence of scale.
Go to article

Abstract

The paper presents the results of research on the microstructure of GX2CrNiMoCuN25-6-3-3 and GX2CrNiMoCuN25-6-3 cast steels with a varying carbon content. The cause for undertaking the research were technological problems with hot cracking in bulk castings of duplex cast steel with a carbon content of approx. 0.06% and with 23% Cr, 8.5% Ni, 3% Mo and 2.4% Cu. The research has shown a significant effect of increased carbon content on the ferrite and austenite microstructure morphology, while exceeding the carbon content of 0.06% results in a change of the shape of primary grains from equiaxial to columnar.
Go to article

Abstract

Flake graphite cast iron was hot-dip coated with pure aluminium or aluminium alloys (AlSi11 and AlTi5). The study aimed at determining the influence of bath composition on the thickness, microstructure and phase composition of the coatings. The analysis was conducted by means of an optical microscope and a scanning electron microscope with an EDS spectrometer. It was found that the overall thickness of a coating was greatly dependent on the chemical composition of a bath. The coatings consisted of an outer layer and an inner intermetallic layer, the latter with two zones and dispersed graphite. In all the cases considered, the zone in the inner intermetallic layer adjacent to the cast iron substrate contained the Al5Fe2 phase with small amount of silicon; the interface between this phase and the cast iron substrate differed substantially, depending on the bath composition. In the coatings produced by hot-dipping in pure aluminium the zone adjacent to the outer layer had a composition similar to that produced from an AlTi5 bath, the Al3Fe phase was identified in this zone. The Al3Fe also contained silicon but its amount was lower than that in the Al5Fe2. In the coatings produced by hot-dipping in AlSi11, the zone adjacent to the outer layer contained the Al3FeSi phase. The analysis results showed that when AlSi11 alloy was applied, the growth mode of the inner layer changed from inwards to outwards. The interface between the Al5Fe2 phase and the cast iron substrate was flat and the zone of this phase was very thin. Locally, there were deep penetrations of the Al5FeSi phase into the outer layer, and the interface between this phase and the outer layer was irregular. Immersion in an AlTi5 bath caused that the inner intermetallic layer was thicker than when pure aluminium or AlSi11 alloy baths were used; also, some porosity was observed in this layer; and finally, the interface between the inner layer and the cast iron substrate was the most irregular.
Go to article

Abstract

This paper deals with numerical and analytical modelling of a diamond or silicon particle embedded in a metallic matrix. The numerical model of an elastic particle in a metallic matrix was created using the Abaqus software. Truncated octahedron-shaped and spherical-shaped diamond particles were considered. The numerical analysis involved determining the effect of temperature on the elastic and plastic parameters of the matrix material. The analytical model was developed for a spherical particle in a metallic matrix. The comparison of the numerical results with the analytical data indicates that the mechanical parameters responsible for the retention of diamond particles in a metal matrix are: the elastic energy of the particle, the elastic energy of the matrix and the radius of the plastic zone around the particle. An Al-based alloy containing 5% of Si and 2% of Cu was selected to study the mechanical behaviour of silicon precipitates embedded in the aluminium matrix. The model proposed to describe an elastic particle in a metallic matrix can be used to analyze other materials with inclusions or precipitates.
Go to article

Abstract

Inconel 713C precision castings are used as aircraft engine components exposed to high temperatures and the aggressive exhaust gas environment. Industrial experience has shown that precision-cast components of such complexity contain casting defects like microshrinkage, porosity, and cracks. This necessitates the development of repair technologies for castings of this type. This paper presents the results of metallographic examinations of melted areas and clad welds on the Inconel 713C nickel-based superalloy, made by TIG, plasma arc, and laser. The cladding process was carried out on model test plates in order to determine the technological and materialrelated problems connected with the weldability of Inconel 713C. The studies included analyses of the macro- and microstructure of the clad welds, the base materials, and the heat-affected zones. The results of the structural analyses of the clad welds indicate that Inconel 713C should be classified as a low-weldability material. In the clad welds made by laser, cracks were identified mainly in the heat-affected zone and at the melted zone interface, crystals were formed on partially-melted grains. Cracks of this type were not identified in the clad welds made using the plasma-arc method. It has been concluded that due to the possibility of manual cladding and the absence of welding imperfections, the technology having the greatest potential for application is plasma-arc cladding.
Go to article

This page uses 'cookies'. Learn more