Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Usually, cellular networks are modeled by placing each tier (e.g macro, pico and relay nodes) deterministically on a grid. When calculating the metric performances such as coverage probability, these networks are idealized for not considering the interference. Overcoming such limitation by realistic models is much appreciated. This paper considered two- tier twohop cellular network, each tier is consisting of two-hop relay transmission, relay nodes are relaying the message to the users that are in the cell edge. In addition, the locations of the relays, base stations (BSs), and users nodes are modeled as a point process on the plane to study the two hop downlink performance. Then, we obtain a tractable model for the k-coverage probability for the heterogeneous network consisting of the two-tier network. Stochastic geometry and point process theory have deployed to investigate the proposed two-hop scheme. The obtained results demonstrate the effectiveness and analytical tractability to study the heterogeneous performance.
Go to article

Abstract

The Traffic Flow Description (TFD) option of the IP protocol is an experimental option, designed by the Authors and described by the IETF’s Internet Draft. This option was intended for signalling for QoS purposes. Knowledge about forthcoming traffic (such as the amount of data that will be transferred in a given period of time) is conveyed in the fields of the option between end-systems. TFD-capable routers on a path (or a multicast tree) between the sender and receiver(s) are able to read this information, process it and use it for bandwidth allocation. If the time horizons are short enough, bandwidth allocation will be performed dynamically. In the paper a performance evaluation of an HD video transmission QoS assured with the use of the TFD option is presented. The analysis was made for a variable number of video streams and a variable number of TCP flows that compete with the videos for the bandwidth of the shared link. Results show that the dynamic bandwidth allocation using the TFD option better assures the QoS of HD video than the classic solution, based on the RSVP protocol.
Go to article

This page uses 'cookies'. Learn more